scholarly journals Insights into the Genomics of Clownfish Adaptive Radiation: Genetic Basis of the Mutualism with Sea Anemones

2019 ◽  
Vol 11 (3) ◽  
pp. 869-882 ◽  
Author(s):  
Anna Marcionetti ◽  
Victor Rossier ◽  
Natacha Roux ◽  
Pauline Salis ◽  
Vincent Laudet ◽  
...  
2021 ◽  
Author(s):  
Leah DeLorenzo ◽  
Destiny Mathews ◽  
A. Allyson Brandon ◽  
Mansi Joglekar ◽  
Aldo Carmona Baez ◽  
...  

Divergence along the benthic-pelagic axis is one of the most widespread and repeated patterns of morphological variation in fishes, producing body shape diversity associated with ecology and swimming mechanics. This ecological shift is also the first stage of the explosive adaptive radiation of cichlid fishes in the East African Rift Lakes. We use two hybrid crosses of cichlids (Metriaclima sp. x Aulonocara sp. and Labidochromis sp. x Labeotropheus sp., >975 animals total) along the benthic-pelagic ecomorphological axis to determine the genetic basis of body shape diversification. Using a series of both linear and geometric shape measurements, we identify 55 quantitative trait loci (QTL) that underlie various aspects of body shape variation associated with benthic-pelagic divergence. These QTL are spread throughout the genome, each explain 3.0-7.2% of phenotypic variation, and are largely modular. Further, QTL are distinct both between these two crosses of Lake Malawi cichlids and compared to previously identified QTL for body shape in fishes such as sticklebacks. We find that body shape is controlled by many genes of small effects. In all, we find that convergent benthic and pelagic body phenotypes commonly observed across fish clades are most likely due to distinct genetic and molecular mechanisms.


2012 ◽  
Vol 12 (1) ◽  
pp. 212 ◽  
Author(s):  
Glenn Litsios ◽  
Carrie A Sims ◽  
Rafael O Wüest ◽  
Peter B Pearman ◽  
Niklaus E Zimmermann ◽  
...  

2017 ◽  
Author(s):  
Anna Marcionetti ◽  
Victor Rossier ◽  
Joris A. M. Bertrand ◽  
Glenn Litsios ◽  
Nicolas Salamin

AbstractClownfishes (or anemonefishes) form an iconic group of coral reef fishes, particularly known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare group to have experienced an adaptive radiation in the marine environment.Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained a total of 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii BUSCOs (Benchmarking Universal Single-Copy Orthologs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies.This resource is valuable for the advancing of studies of the particular life-history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation.


2021 ◽  
Author(s):  
Bohao Fang ◽  
Paolo Momigliano ◽  
Kimmo Kahilainen ◽  
Juha Merila

The European whitefish (Coregonus lavaretus) species complex is a classic example of recent adaptive radiation. Here we examine a whitefish population introduced to northern Finnish Lake Tsahkal in late 1960s, where three divergent morphs (viz. littoral, pelagic and profundal feeders) were found ten generations after. Using demographic modelling based on genomic data we show that whitefish morphs evolved during a phase of strict isolation, refuting a rapid symmetric speciation scenario. The lake is now an artificial hybrid zone between morphs originated in allopatry. Despite their current syntopy, clear genetic differentiation remains between two of the three morphs. Using admixture mapping three quantitative trait loci associated with gonad weight variation, a proxy for sexual maturity and spawning time, were identified. We suggest that ecological adaptations in spawning time evolved in allopatry are currently maintaining partial reproductive isolation in the absence of other barriers to gene flow.


1996 ◽  
Vol 16 (02) ◽  
pp. 114-138 ◽  
Author(s):  
R. E. Scharf

SummarySpecific membrane glycoproteins (GP) expressed by the megakaryocyte-platelet system, including GPIa-lla, GPIb-V-IX, GPIIb-llla, and GPIV are involved in mediat-ing platelet adhesion to the subendothelial matrix. Among these glycoproteins, GPIIb-llla plays a pivotal role since platelet aggregation is exclusively mediated by this receptor and its interaction with soluble macromolecular proteins. Inherited defects of the GPIIb-llla or GPIb-V-IX receptor complexes are associated with bleeding disorders, known as Glanzmann's thrombasthenia, Bernard-Soulier syndrome, or platelet-type von Willebrand's disease, respectively. Using immuno-chemical and molecular biology techniques, rapid advances in our understanding of the molecular genetic basis of these disorders have been made during the last few years. Moreover, analyses of patients with congenital platelet membrane glycoprotein abnormalities have provided valuable insights into molecular mechanisms that are required for structural and functional integrity, normal biosynthesis of the glycoprotein complexes and coordinated membrane expression of their constituents. The present article reviews the current state of knowledge of the major membrane glycoproteins in health and disease. The spectrum of clinical bleeding manifestations and established diagnostic criteria for each of these dis-orders are summarized. In particular, the variety of molecular defects that have been identified so far and their genetic basis will be discussed.


Author(s):  
Deirdre O'Sullivan ◽  
Michael Moore ◽  
Susan Byrne ◽  
Andreas O. Reiff ◽  
Susanna Felsenstein

AbstractAcute disseminated encephalomyelitis in association with extensive longitudinal transverse myelitis is reported in a young child with positive anti-myelin oligodendrocyte glycoprotein (MOG) antibody with heterozygous NLRP3 missense mutations; p.(Arg488Lys) and p.(Ser159Ile). This case may well present an exceptional coincidence, but may describe a yet unrecognized feature of the spectrum of childhood onset cryopyrinopathies that contribute to the understanding of the genetic basis for anti-MOG antibody positive encephalomyelitis. Based on this observation, a larger scale study investigating the role of NLRP3 and other inflammasomes in this entity would provide important pathophysiological insights and potentially novel avenues for treatment.


Sign in / Sign up

Export Citation Format

Share Document