sequential hermaphroditism
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261331
Author(s):  
Laurie J. Mitchell ◽  
Valerio Tettamanti ◽  
Justin S. Rhodes ◽  
N. Justin Marshall ◽  
Karen L. Cheney ◽  
...  

Genomic manipulation is a useful approach for elucidating the molecular pathways underlying aspects of development, physiology, and behaviour. However, a lack of gene-editing tools appropriated for use in reef fishes has meant the genetic underpinnings for many of their unique traits remain to be investigated. One iconic group of reef fishes ideal for applying this technique are anemonefishes (Amphiprioninae) as they are widely studied for their symbiosis with anemones, sequential hermaphroditism, complex social hierarchies, skin pattern development, and vision, and are raised relatively easily in aquaria. In this study, we developed a gene-editing protocol for applying the CRISPR/Cas9 system in the false clown anemonefish, Amphiprion ocellaris. Microinjection of zygotes was used to demonstrate the successful use of our CRISPR/Cas9 approach at two separate target sites: the rhodopsin-like 2B opsin encoding gene (RH2B) involved in vision, and Tyrosinase-producing gene (tyr) involved in the production of melanin. Analysis of the sequenced target gene regions in A. ocellaris embryos showed that uptake was as high as 73.3% of injected embryos. Further analysis of the subcloned mutant gene sequences combined with amplicon shotgun sequencing revealed that our approach had a 75% to 100% efficiency in producing biallelic mutations in F0 A. ocellaris embryos. Moreover, we clearly show a loss-of-function in tyr mutant embryos which exhibited typical hypomelanistic phenotypes. This protocol is intended as a useful starting point to further explore the potential application of CRISPR/Cas9 in A. ocellaris, as a platform for studying gene function in anemonefishes and other reef fishes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Goikoetxea ◽  
S. Muncaster ◽  
E. V. Todd ◽  
P. M. Lokman ◽  
H. A. Robertson ◽  
...  

AbstractThe stunning sexual transformation commonly triggered by age, size or social context in some fishes is one of the best examples of phenotypic plasticity thus far described. To date our understanding of this process is dominated by studies on a handful of subtropical and tropical teleosts, often in wild settings. Here we have established the protogynous New Zealand spotty wrasse, Notolabruscelidotus, as a temperate model for the experimental investigation of sex change. Captive fish were induced to change sex using aromatase inhibition or manipulation of social groups. Complete female-to-male transition occurred over 60 days in both cases and time-series sampling was used to quantify changes in hormone production, gene expression and gonadal cellular anatomy. Early-stage decreases in plasma 17β-estradiol (E2) concentrations or gonadal aromatase (cyp19a1a) expression were not detected in spotty wrasse, despite these being commonly associated with the onset of sex change in subtropical and tropical protogynous (female-to-male) hermaphrodites. In contrast, expression of the masculinising factor amh (anti-Müllerian hormone) increased during early sex change, implying a potential role as a proximate trigger for masculinisation. Collectively, these data provide a foundation for the spotty wrasse as a temperate teleost model to study sex change and cell fate in vertebrates.


Author(s):  
Susanna Pla ◽  
Francesc Maynou ◽  
Francesc Piferrer

AbstractThe distribution of hermaphroditism in fishes has traditionally been mainly explained by its dependence on biotic factors. However, correlates with major abiotic factors have not been investigated on a quantitative basis and at a global scale. Here, we determined the incidence of hermaphroditism in fish at the family and species level, tested the hypothesis that evolutionary relationships account for the poor presence of hermaphroditism in freshwater species, and tested the association of sexual systems with latitude, habitat type and depth. Functional hermaphroditism is reported in 8 orders, 34 families and 370 species of fishes, all teleosts. Sequential hermaphroditism predominates over simultaneous hermaphroditism at a ratio ~ 5:1 and protogyny (female-to-male sex change) predominates ~ 6:1 over protandry (male-to-female). We found 12 hermaphroditic species that can live in freshwater. However, seven of these species are from four primarily marine families while there are only five species from two mostly freshwater families. Protogynous and bi-directional sex changers have a tighter association with reef-associated tropical and subtropical habitats when compared to protandrous species, which tend to be more plastic in terms of distribution requirements. Finally, simultaneous hermaphrodite species live both in the deep sea and shallow waters in similar proportions. This study can be the basis for further research in specific groups for different purposes, including ecological and evolutionary issues as well as conservation and management of exploited species. Understanding the environmental correlates can help to forecast changes in the distribution or phenology of hermaphrodites in a global change scenario.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryosuke Murata ◽  
Ryo Nozu ◽  
Yuji Mushirobira ◽  
Takafumi Amagai ◽  
Jun Fushimi ◽  
...  

AbstractVertebrates usually exhibit gonochorism, whereby their sex is fixed throughout their lifetime. However, approximately 500 species (~ 2%) of extant teleost fishes change sex during their lifetime. Although phylogenetic and evolutionary ecological studies have recently revealed that the extant sequential hermaphroditism in teleost fish is derived from gonochorism, the evolution of this transsexual ability remains unclear. We revealed in a previous study that the tunica of the ovaries of several protogynous hermaphrodite groupers contain functional androgen-producing cells, which were previously unknown structures in the ovaries of gonochoristic fishes. Additionally, we demonstrated that these androgen-producing cells play critical roles in initiating female-to-male sex change in several grouper species. In the present study, we widened the investigation to include 7 genera and 18 species of groupers and revealed that representatives from most major clades of extant groupers commonly contain these androgen-producing cells, termed testicular-inducing steroidogenic (TIS) cells. Our findings suggest that groupers acquired TIS cells in the tunica of the gonads for successful sex change during their evolution. Thus, TIS cells trigger the evolution of sex change in groupers.


2021 ◽  
Vol 25 (1) ◽  
pp. 55-58
Author(s):  
Hyeon Jin Kim ◽  
So Ryung Shin ◽  
Han Young Oh ◽  
Jae Won Kim ◽  
Jung Sick Lee

2021 ◽  
Vol 11 ◽  
Author(s):  
Qing-Ping Xie ◽  
Bing-Bing Li ◽  
Wei Zhan ◽  
Feng Liu ◽  
Peng Tan ◽  
...  

Animal taxa show remarkable variability in sexual reproduction, where separate sexes, or gonochorism, is thought to have evolved from hermaphroditism for most cases. Hermaphroditism accounts for 5% in animals, and sequential hermaphroditism has been found in teleost. In this study, we characterized a novel form of the transient hermaphroditic stage in little yellow croaker (Larimichthys polyactis) during early gonadal development. The ovary and testis were indistinguishable from 7 to 40 days post-hatching (dph). Morphological and histological examinations revealed an intersex stage of male gonads between 43 and 80 dph, which consist of germ cells, somatic cells, efferent duct, and early primary oocytes (EPOs). These EPOs in testis degenerate completely by 90 dph through apoptosis yet can be rescued by exogenous 17-β-estradiol. Male germ cells enter the mitotic flourishing stage before meiosis is initiated at 180 dph, and they undergo normal spermatogenesis to produce functional sperms. This transient hermaphroditic stage is male-specific, and the ovary development appears to be normal in females. This developmental pattern is not found in the sister species Larimichthys crocea or any other closely related species. Further examinations of serum hormone levels indicate that the absence of 11-ketotestosterone and elevated levels of 17-β-estradiol delineate the male intersex gonad stage, providing mechanistic insights on this unique phenomenon. Our research is the first report on male-specific transient hermaphroditism and will advance the current understanding of fish reproductive biology. This unique gonadal development pattern can serve as a useful model for studying the evolutionary relationship between hermaphroditism and gonochorism, as well as teleost sex determination and differentiation strategies.


2020 ◽  
Author(s):  
Laurie J. Mitchell ◽  
Valerio Tettamanti ◽  
Justin N. Marshall ◽  
Karen L. Cheney ◽  
Fabio Cortesi

ABSTRACTGenomic manipulation is a useful approach for elucidating the molecular pathways underlying aspects of development, physiology, and behaviour. However, a lack of gene-editing tools appropriated for use in reef fishes has meant the genetic underpinnings for many of their unique traits remain to be investigated. One iconic group of reef fishes ideal for applying this technique are anemonefishes (Amphiprioninae) as they are widely studied for their symbiosis with anemones, sequential hermaphroditism, complex social hierarchies, skin pattern development, and vision, and are raised relatively easily in aquaria. In this study, we developed a gene-editing protocol for applying the CRISPR/Cas9 system in the false clown anemonefish, Amphiprion ocellaris. Microinjection of eggs at the one-cell stage was used to demonstrate the successful use of our CRISPR/Cas9 approach at two separate target sites: the rhodopsin-like 2B opsin encoding gene (RH2B) involved in vision, and Tyrosinase-producing gene (tyr) involved in the production of melanin. Analysis of the sequenced target gene regions in A. ocellaris embryos showed that uptake was as high as 50% of injected eggs. Further analysis of the subcloned mutant gene sequences revealed that our approach had a 75% to 100% efficiency in producing biallelic mutations in G0 A. ocellaris embryos. Moreover, we clearly show a loss-of-function in tyr mutant embryos which exhibited typical hypomelanistic phenotypes. This protocol is intended as a useful resource for future experimental studies that aim to elucidate gene function in anemonefishes and reef fishes in general.


BioEssays ◽  
2020 ◽  
Vol 42 (10) ◽  
pp. 2000050
Author(s):  
Barbora Straková ◽  
Michail Rovatsos ◽  
Lukáš Kubička ◽  
Lukáš Kratochvíl

Sign in / Sign up

Export Citation Format

Share Document