ecological adaptations
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 33)

H-INDEX

22
(FIVE YEARS 2)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Elvira Hörandl

Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as “units”. Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Johanna Henke-von der Malsburg ◽  
Peter M. Kappeler ◽  
Claudia Fichtel

Cognitive abilities covary with both social and ecological factors across animal taxa. Ecological generalists have been attributed with enhanced cognitive abilities, but which specific ecological factors may have shaped the evolution of which specific cognitive abilities remains poorly known. To explore these links, we applied a cognitive test battery (two personality, ten cognitive tests; n = 1104 tests) to wild individuals of two sympatric mouse lemur species ( n = 120 Microcebus murinus, n = 34 M. berthae ) varying in ecological adaptations but sharing key features of their social systems. The habitat and dietary generalist grey mouse lemurs were more innovative and exhibited better spatial learning abilities; a cognitive advantage in responding adaptively to dynamic environmental conditions. The more specialized Madame Berthe's mouse lemurs were faster in learning associative reward contingencies, providing relative advantages in stable environmental conditions. Hence, our study revealed key cognitive correlates of ecological adaptations and indicates potential cognitive constraints of specialists that may help explain why they face a greater extinction risk in the context of current environmental changes.


Author(s):  
Andrew I. Kozlov ◽  
◽  

The study populations have been grouped into two clusters. The first constituted the ethnic groups that are anthropologically affine but differ in adaptive types and husbandry practices. The second included the anthropologically unrelated ethnic groups having similar environment economy systems and adaptive types. We analyzed the genotype and allele frequencies of the metabolism-associated APOE, LCT, TREH, UCP1 genes, and Fok1 and BsmI polymorphisms of VDR gene. A total of 749 samples in the study represents the ethnic groups of Komi-Permyaks (n=181), Komi (n=235), Komi-Izhems (n=200), Shores (n=133). Results. A resemblance in the morphological and physiological complexes that have convergently developed in the course of environmental adaptations have been shown to reflect similarities in the gene features of anthropologically unrelated populations. In contrast, in the historically related groups that have utilized different biotopes and types of husbandry, there are growing divergence in the frequencies of metabolism-associated genotypes and alleles. These findings imply that ecological adaptations of modern human populations drive the minor changes in allele frequencies, which have occurred over a few generations. Conclusion. The apparent morpho-physiological and population-genetic specificity of the adaptive types allows us to regard the process of their formation as microevolution.


2021 ◽  
Author(s):  
Bohao Fang ◽  
Paolo Momigliano ◽  
Kimmo Kahilainen ◽  
Juha Merila

The European whitefish (Coregonus lavaretus) species complex is a classic example of recent adaptive radiation. Here we examine a whitefish population introduced to northern Finnish Lake Tsahkal in late 1960s, where three divergent morphs (viz. littoral, pelagic and profundal feeders) were found ten generations after. Using demographic modelling based on genomic data we show that whitefish morphs evolved during a phase of strict isolation, refuting a rapid symmetric speciation scenario. The lake is now an artificial hybrid zone between morphs originated in allopatry. Despite their current syntopy, clear genetic differentiation remains between two of the three morphs. Using admixture mapping three quantitative trait loci associated with gonad weight variation, a proxy for sexual maturity and spawning time, were identified. We suggest that ecological adaptations in spawning time evolved in allopatry are currently maintaining partial reproductive isolation in the absence of other barriers to gene flow.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yachna Jain ◽  
Keerthivasan Raanin Chandradoss ◽  
Anjoom A. V. ◽  
Jui Bhattacharya ◽  
Mohan Lal ◽  
...  

AbstractThe rodents of hystricomorpha and sciuromorpha suborders exhibit remarkably lower incidence of cancer. The underlying genetic basis remains obscure. We report a convergent evolutionary split of human 3p21.31, a locus hosting a large number of tumour-suppressor genes (TSGs) and frequently deleted in several tumour types, in hystrico- and sciuromorphs. Analysis of 34 vertebrate genomes revealed that the synteny of 3p21.31 cluster is functionally and evolutionarily constrained in most placental mammals, but exhibit large genomic interruptions independently in hystricomorphs and sciuromorphs, owing to relaxation of underlying constraints. Hystrico- and sciuromorphs, therefore, escape from pro-tumorigenic co-deletion of several TSGs in cis. The split 3p21.31 sub-clusters gained proximity to proto-oncogene clusters from elsewhere, which might further nullify pro-tumorigenic impact of copy number variations due to co-deletion or co-amplification of genes with opposing effects. The split of 3p21.31 locus coincided with the accelerated rate of its gene expression and the body mass evolution of ancestral hystrico- and sciuromorphs. The genes near breakpoints were associated with the traits specific to hystrico- and sciuromorphs, implying adaptive significance. We conclude that the convergently evolved chromosomal interruptions of evolutionarily constrained 3p21.31 cluster might have impacted evolution of cancer resistance, body mass variation and ecological adaptations in hystrico- and sciuromorphs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Braga ◽  
C. Samir ◽  
A. Fradi ◽  
Y. Feunteun ◽  
K. Jakata ◽  
...  

AbstractInsights into potential differences among the bony labyrinths of Plio-Pleistocene hominins may inform their evolutionary histories and sensory ecologies. We use four recently-discovered bony labyrinths from the site of Kromdraai to significantly expand the sample for Paranthropus robustus. Diffeomorphometry, which provides detailed information about cochlear shape, reveals size-independent differences in cochlear shape between P. robustus and Australopithecus africanus that exceed those among modern humans and the African apes. The cochlea of P. robustus is distinctive and relatively invariant, whereas cochlear shape in A. africanus is more variable, resembles that of early Homo, and shows a degree of morphological polymorphism comparable to that evinced by modern species. The curvature of the P. robustus cochlea is uniquely derived and is consistent with enhanced sensitivity to low-frequency sounds. Combined with evidence for selection, our findings suggest that sound perception shaped distinct ecological adaptations among southern African early hominins.


Aliso ◽  
2021 ◽  
Vol 38 (1) ◽  
pp. 62-75
Author(s):  
Sherwin Carlquist ◽  
Mark Olson

Argophyllaceae (Argophyllum, 14 spp.; Corokia, 6 spp.; Lautea, 1 sp.), are shrubs that occur in the southwestern Pacific and eastern Australia. They occur in habitats where moisture is relatively common but dry days and mild frost may occur. The woods of these genera show enough distinctive features to justify their grouping in a single family: perforation plates with 10–20 bars, vessel elements narrow and numerous per mm2, imperforate tracheary elements about 50% longer than the vessel elements, axial parenchyma scarce, diffuse, multiseriate rays narrow and heterocellular (upright cells common in uniseriate rays), crystals absent, gum deposits common. These features group the genera of Argophyllaceae more closely with each other than with the nearest families in Asterales (Alseuosmiaceae, Phellinaceae). Probable apomorphies of the genera include helical thickenings in vessels and tracheids, together with abundant tracheids and rare septate fiber-tracheids (Corokia); almost total absence of axial parenchyma and tracheids combined with maximal abundance of septate fiber-tracheids and no helical thickenings (Argophyllum, Lautea). Lautea, formerly included within Corokia, has floral and foliar distinctions and is endemic to a single island, Rapa Iti. Woods of Argophyllaceae are alike in their ecological adaptations (perforation plates, vessel diameter and density) but the presence of tracheids and helical thickenings in Corokia suggest adaptations to frost and mild drought. As expected, vessels group more prominently in the tracheid-free species (Argophyllum, Lautea) but very little in the tracheid-rich genus Corokia.


2021 ◽  
Vol 22 (11) ◽  
pp. 5471
Author(s):  
Tereza Kubasova ◽  
Zuzana Seidlerova ◽  
Ivan Rychlik

In this review, we link ecological adaptations of different gut microbiota members with their potential for use as a new generation of probiotics. Gut microbiota members differ in their adaptations to survival in aerobic environments. Interestingly, there is an inverse relationship between aerobic survival and abundance or potential for prolonged colonization of the intestinal tract. Facultative anaerobes, aerotolerant Lactobacilli and endospore-forming Firmicutes exhibit high fluctuation, and if such bacteria are to be used as probiotics, they must be continuously administered to mimic their permanent supply from the environment. On the other hand, species not expressing any form of aerobic resistance, such as those from phylum Bacteroidetes, commonly represent host-adapted microbiota members characterized by vertical transmission from mothers to offspring, capable of long-term colonization following a single dose administration. To achieve maximal probiotic efficacy, the mode of their administration should thus reflect their natural ecology.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249641
Author(s):  
Cory J. D. Matthews ◽  
Jack W. Lawson ◽  
Steven H. Ferguson

Ecotypes are groups within a species with different ecological adaptations than their conspecifics. Eastern North Pacific (ENP) killer whale (Orcinus orca) ecotypes differ in their diet, behavior, and morphology, but the same is not known for this species in the eastern Canadian Arctic (ECA) and Northwest Atlantic (NWA). Using compound-specific stable isotope analysis (CSIA) of amino acids (AAs), we compared δ15N patterns of the primary trophic and source AA pair, glutamic acid/glutamine (Glx) and phenylalanine (Phe), in dentine collagen of (1) sympatric ENP killer whale ecotypes with well-characterized diet differences and (2) ECA/NWA killer whales with unknown diets. δ15NGlx-Phe was significantly higher in the ENP fish-eating (FE) than mammal-eating (ME) ecotype (19.2 ± 0.4‰ vs. 13.5 ± 0.7‰, respectively). Similar bimodal variation in δ15NGlx-Phe indicated analogous dietary divisions among ECA/NWA killer whales, with two killer whales having higher δ15NGlx-Phe (16.5 ± 0.0‰) than the others (13.5 ± 0.6‰). Inferences of dietary divisions between these killer whales were supported by parallel differences in threonine δ15N (–33.5 ± 1.6‰ and –40.4 ± 1.1‰, respectively), given the negative correlation between δ15NThr and TP across a range of marine consumers. CSIA-AA results for ECA/NWA whales, coupled with differences in tooth wear (a correlate for diet), are consistent with ecotype characteristics reported in ENP and other killer whale populations, thus adding to documented ecological divergence in this species worldwide.


Sign in / Sign up

Export Citation Format

Share Document