scholarly journals New High-Quality Draft Genome of the Brown Rot Fungal Pathogen Monilinia fructicola

2019 ◽  
Vol 11 (10) ◽  
pp. 2850-2855 ◽  
Author(s):  
Rita Milvia De Miccolis Angelini ◽  
Gianfranco Romanazzi ◽  
Stefania Pollastro ◽  
Caterina Rotolo ◽  
Francesco Faretra ◽  
...  

Abstract Brown rot is a worldwide fungal disease of stone and pome fruit that is caused by several Monilinia species. Among these, Monilinia fructicola can cause severe preharvest and postharvest losses, especially for stone fruit. Here, we present a high-quality draft genome assembly of M. fructicola Mfrc123 strain obtained using both Illumina and PacBio sequencing technologies. The genome assembly comprised 20 scaffolds, including 29 telomere sequences at both ends of 10 scaffolds, and at a single end of 9 scaffolds. The total length was 44.05 Mb, with a scaffold N50 of 2,592 kb. Annotation of the M. fructicola assembly identified a total of 12,118 genes and 13,749 proteins that were functionally annotated. This newly generated reference genome is expected to significantly contribute to comparative analysis of genome biology and evolution within Monilinia species.

2020 ◽  
Vol 33 (2) ◽  
pp. 145-148
Author(s):  
Lucia Landi ◽  
Stefania Pollastro ◽  
Caterina Rotolo ◽  
Gianfranco Romanazzi ◽  
Francesco Faretra ◽  
...  

Monilinia laxa is the causal agent of brown rot on stone fruit, and it can cause heavy yield losses during field production and postharvest storage. This article reports the draft genome assembly of the M. laxa Mlax316 strain, obtained using a hybrid genome assembly with both Illumina short-reads and PacBio long-reads sequencing technologies. The complete draft genome consists of 49 scaffolds with total size of 42.81 Mb, and scaffold N50 of 2,449.4 kb. Annotation of the M. laxa assembly identified 11,163 genes and 12,424 proteins which were functionally annotated. This new genome draft improves current genomic resources available for M. laxa and represents a useful tool for further research into its interactions with host plants and into evolution in the Monilinia genus.


Plant Disease ◽  
2020 ◽  
Author(s):  
Chengming Yu ◽  
Yufei Diao ◽  
Quan Lu ◽  
Jiaping Zhao ◽  
Shengnan Cui ◽  
...  

Botryosphaeria dothidea is a latent and important fungal pathogen on a wide range of woody plants. Fruit ring rot caused by B. dothidea is a major disease in China on apple. This study establishes a high quality, nearly complete and well annotated genome sequence of B. dothidea strain sdau11-99. The findings of this research provide a reference genome resource for further research on the apple fruit ring rot pathogen on apple and other hosts.


2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Mohammad H. A. Ibrahim ◽  
Brady F. Cress ◽  
Robert J. Linhardt ◽  
Mattheos A. G. Koffas ◽  
Richard A. Gross

We report here the 4.092-Mb high-quality draft genome assembly of a newly isolated poly-γ-glutamic acid–producing strain,Bacillus subtilisIa1a. The genome sequence is considered a critical tool to facilitate the engineering of improved production strains. Exopolysaccharides and many industrially important enzymes can be produced by this new strain utilizing different carbon sources.


2019 ◽  
Vol 11 (2) ◽  
pp. 521-530 ◽  
Author(s):  
Feng Zhang ◽  
Yinhuan Ding ◽  
Qing-Song Zhou ◽  
Jun Wu ◽  
Arong Luo ◽  
...  

2019 ◽  
Vol 8 (36) ◽  
Author(s):  
Rachel J. Warmington ◽  
William Kay ◽  
Aaron Jeffries ◽  
Paul O’Neill ◽  
Audrey Farbos ◽  
...  

We present a high-quality draft genome assembly for Fusarium oxysporum f. sp. cubense tropical race 4 (Fusarium odoratissimum), assembled from PacBio reads and consisting of 15 contigs with a total assembly size of 48.59 Mb. This strain appears to belong to vegetative compatibility group complex 01213/16.


Author(s):  
Bhawna Bonthala ◽  
Corinn Sophia Small ◽  
Maximilian Anton Lutz ◽  
Alexander Graf ◽  
Stefan Krebs ◽  
...  

Species of Alternaria (phylum Ascomycota, family Pleosporaceae) are known as serious plant pathogens, causing major losses on a wide range of crops. Alternaria atra (Preuss) Woudenb. & Crous (previously known as Ulocladium atrum) can grow as a saprophyte on many hosts and causes Ulocladium blight on potato. It has been reported that it can also be used as a biocontrol agent against a.o. Botrytis cinerea Here we present a scaffold-level reference genome assembly for A. atra. The assembly contains 43 scaffolds with a total length of 39.62 Mbp, with scaffold N50 of 3,893,166 bp , L50 of 4 and the longest 10 scaffolds containing 89.9% of the assembled data. RNA Seq-guided, gene prediction using BRAKER resulted in 12,173 protein-coding genes with their functional annotation. This first high-quality reference genome assembly and annotation for A. Atra can be used as a resource for studying evolution in the highly complicated Alternaria genus and might help understand the mechanisms defining its role as pathogen or biocontrol agent.


2018 ◽  
Vol 6 (20) ◽  
Author(s):  
Anil Kumar ◽  
Pallavi Mishra ◽  
Ranjeet Maurya ◽  
A. K. Mishra ◽  
Vijai K. Gupta ◽  
...  

ABSTRACT Karnal bunt of wheat is an internationally quarantined fungal pathogen disease caused by Tilletia indica and affects the international commercial seed trade of wheat. We announce here the first improved draft genome assembly of a monoteliosporic culture of the Tilletia indica fungus, consisting of 787 scaffolds with an approximate total genome size of 31.83 Mbp, which is more accurate and near to complete than the previous version.


Author(s):  
Jee-Hoon Kim ◽  
Hyun Kyong Kim ◽  
Heesoo Kim ◽  
Benny K. K. Chan ◽  
Seunghyun Kang ◽  
...  

2019 ◽  
Vol 8 (15) ◽  
Author(s):  
Peter M. Henry ◽  
Michelle Stueven ◽  
Sampson Li ◽  
Eugene M. Miyao ◽  
Thomas R. Gordon ◽  
...  

Fusarium wilt of tomato, caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici, is an increasingly important disease of tomato. This paper reports the high-quality draft genome assembly of F. oxysporum f. sp. lycopersici isolate D11 (race 3), which consists of 39 scaffolds with 57,281,978 bp (GC content, 47.5%), an N 50 of 4,408,267 bp, a mean read coverage of 99.8×, and 17,682 predicted genes.


2017 ◽  
Vol 5 (10) ◽  
Author(s):  
P. Gan ◽  
M. Narusaka ◽  
A. Tsushima ◽  
Y. Narusaka ◽  
Y. Takano ◽  
...  

ABSTRACT Colletotrichum chlorophyti is a fungal pathogen that infects various herbaceous plants, including crops such as legumes, tomato, and soybean. Here, we present the genome of C. chlorophyti NTL11, isolated from tomato. Analysis of this genome will allow a clearer understanding of the molecular mechanisms underlying fungal host range and pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document