THE MOLECULAR THROUGH ECOLOGICAL GENETICS OF ABNORMAL ABDOMEN. III. TISSUE-SPECIFIC DIFFERENTIAL REPLICATION OF RIBOSOMAL GENES MODULATES THE ABNORMAL ABDOMEN PHENOTYPE IN DROSOPHILA MERCATORUM

Genetics ◽  
1986 ◽  
Vol 112 (4) ◽  
pp. 877-886
Author(s):  
Rob DeSalle ◽  
Alan R Templeton

ABSTRACT The abnormal abdomen (aa) syndrome in Drosophila mercatorum is controlled by two major X-linked genetic elements. We have previously shown that the major X-linked element of aa is associated with the presence of large inserts in the 28S gene of the ribosomal RNA (rDNA) genes. We show that, in polytene tissue of wild-type D. mercatorum, the uninterrupted rDNA repeats are overreplicated relative to interrupted repeats. Uninterrupted rDNA repeats are also overreplicated in polytene tissue of hybrid larval offspring from wild-type and aa parents. This overreplication of uninterrupted repeats is not observed in diploid tissues of wild-type hybrids (of wild-type and aa parents) and homozygous aa larvae or in polytene tissue of aa larvae. Furthermore, molecular analysis of an aa line that has reverted to the wild type indicates that the reversion phenomenon is associated with the ability to overreplicate uninterrupted rDNA repeats in polytene tissues. The patterns of differential replication of rDNA genes in wild-type hybrids and aa larvae of D. mercatorum offer a possible mechanism for the tissue-specific control of the aa phenotype and suggest that the molecular basis for the second X-linked genetic element of aa is involved in the control of differential replication in polytene tissues.

1989 ◽  
Vol 54 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Mohamed Makni ◽  
Mohamed Marrakchi ◽  
Nicole Prud'Homme

SummaryIn Drosophila melanogaster up to two thirds of the rDNA genes contain insertion sequences of two types in the 28S coding region. Comparison of the ribosomal insertion transcripts in the wild type and in two bobbed mutants reared at two temperatures showed that the level of type I transcripts is dependent on both the number of genes with type I insertions in the bobbed loci and the intensity of bobbed phenotype. Importantly, a long transcript of 8·7 kb hybridized to the ribosomal probe, the INS I probe and also to the restriction fragment of the rDNA downstream of the point of insertion was found in one bobbed mutant. This result and also those from sandwich hybridization indicate that some interrupted ribosomal genes are functional.


2020 ◽  
Vol 117 (28) ◽  
pp. 16333-16338
Author(s):  
Ha An Nguyen ◽  
S. Sunita ◽  
Christine M. Dunham

Bacterial transfer RNAs (tRNAs) contain evolutionarily conserved sequences and modifications that ensure uniform binding to the ribosome and optimal translational accuracy despite differences in their aminoacyl attachments and anticodon nucleotide sequences. In the tRNA anticodon stem−loop, the anticodon sequence is correlated with a base pair in the anticodon loop (nucleotides 32 and 38) to tune the binding of each tRNA to the decoding center in the ribosome. Disruption of this correlation renders the ribosome unable to distinguish correct from incorrect tRNAs. The molecular basis for how these two tRNA features combine to ensure accurate decoding is unclear. Here, we solved structures of the bacterial ribosome containing either wild-typetRNAGGCAlaortRNAGGCAlacontaining a reversed 32–38 pair on cognate and near-cognate codons. Structures of wild-typetRNAGGCAlabound to the ribosome reveal 23S ribosomal RNA (rRNA) nucleotide A1913 positional changes that are dependent on whether the codon−anticodon interaction is cognate or near cognate. Further, the 32–38 pair is destabilized in the context of a near-cognate codon−anticodon pair. Reversal of the pairing intRNAGGCAlaablates A1913 movement regardless of whether the interaction is cognate or near cognate. These results demonstrate that disrupting 32–38 and anticodon sequences alters interactions with the ribosome that directly contribute to misreading.


Genetics ◽  
1993 ◽  
Vol 134 (2) ◽  
pp. 475-485 ◽  
Author(s):  
A R Templeton ◽  
H Hollocher ◽  
J S Johnston

Abstract The abnormal abdomen (aa) syndrome in Drosophila mercatorum depends on the presence of R1 inserts in a third or more of the X-linked 28S rDNA genes and the absence of selective underreplication of inserted repeats in polytene tissues that is controlled by an X-linked locus (ur) half a map unit from the rDNA complex. This syndrome affects both life history and morphology in the laboratory. Because abnormal morphologies are rarely encountered in nature, the purpose of this study is to see if the female life history traits are still affected under more natural genetic backgrounds and environmental conditions. Two outbred stocks were extracted from the natural population living near Kamuela, Hawaii: KaaX that has only X chromosomes with uraa alleles, and K+X that has only ur+ alleles. These two stocks have nonoverlapping distributions of insert proportions, indicating strong disequilibrium between the ur locus and the rDNA complex. The KaaX stock had almost no morphological penetrance of uraa, indicating that genetic background is important. KaaX expressed longer female egg-to-adult developmental times, increased early adult female fecundity, and decreased female adult longevity compared with K+X. By bagging natural rots of the cactus Opuntia megacantha near Kamuela, Hawaii, it was shown that egg-to-adult developmental time is slowed down by 0.92 days in females bearing uraa alleles in nature, with no detectable slowdown in uraa males. The bagged rot data also indicate that females bearing uraa alleles have a strong fecundity advantage in nature under some ecological conditions but not others.


1980 ◽  
Vol 42 (1) ◽  
pp. 127-127
Author(s):  
R.E. Wilson ◽  
H. Swift ◽  
K.S. Chiang

The chloroplast ultrastructure of two Chlamydomonas reinhardtii pigment variant mutants, U3N and U3A, is strikingly different from that of the wild type. The mutant chloroplast has greatly lowered levels of chlorophyll a and b, and lacks the usual ordered thylakoid membrane structure. The amount of chloroplast ribosomes is increased, but the pyrenoid and surrounding starch grains appear to be unaltered. Our biochemical analyses have shown that, while the properties of chloroplast DNA, ribosomal RNA, and ribosomes in these mutants appeared to be normal, their relative amounts per cell increased markedly when compared to the wild type. In U3N these increases were approximately 60% for chloroplast DNA and 80% for chloroplast ribosomes. However, the ratio of chloroplast rDNA genes to total chloroplast DNA remained unchanged as shown by DNA-rRNA hybrdization. We propose that (1) The enhanced level of chloroplast ribosomes in these mutants is a direct consequence of the elevated amount of chloroplast DNA. Both of these increases may, in turn, arise from defective mechanism for their control. (2) These mutants grow successfully in the absence of functional photosynthesis, provided an external carbon source is available to them, but functional plastid DNA, ribosomes and protein synthesis may still be a requirement for normal starch metabolism.


Genetics ◽  
1985 ◽  
Vol 111 (4) ◽  
pp. 805-818
Author(s):  
Alan R Templeton ◽  
Teresa J Crease ◽  
Faith Shah

ABSTRACT The abnormal abdomen syndrome (aa) in Drosophila mercatorum is characterized by the persistence of juvenilized cuticle on the adult abdomen. The aa phenotype is shown to depend on at least two X-linked genetic elements that are about one map unit apart near the centromeric end of the X chromosome. These two genetic elements are necessary for aa expression; one behaves as a dominant element and the other as a recessive. Overlaying these genetic studies upon molecular work reported elsewhere, it is argued that the dominant element is the presence of a 5 kb insertion in a majority of the X-linked repeats coding for the 28S ribosomal RNA. The recessive element appears to be a locus controlling differential replication of noninserted over inserted 28S genes during polytenization. The aa syndrome requires both the presence of the inserted repeats and the failure to preferentially amplify noninserted repeats. Given the necessary X-linked elements for aa, a variety of modifiers are revealed. First, aa expression in males is Y-linked, apparently corresponding to a deletion of the 18S/28S rDNA gene cluster normally found on the Y. Moreover, all major autosomes can modify the penetrance of aa.


Genetics ◽  
1973 ◽  
Vol 73 (3) ◽  
pp. 429-434
Author(s):  
J James Donady ◽  
R L Seecof ◽  
M A Fox

ABSTRACT Drosophila melanogaster embryos that lacked ribosomal DNA were obtained from appropriate crosses. Cells were taken from such embryos before overt differentiation took place and were cultured in vitro. These cells differentiated into neurons and myocytes with the same success as did wild-type controls. Therefore, ribosomal RNA synthesis is not necessary for the differentiation of neurons and myocytes in vitro.


2011 ◽  
Vol 208 (8) ◽  
pp. 1683-1694 ◽  
Author(s):  
Joyce Wei ◽  
P’ng Loke ◽  
Xingxing Zang ◽  
James P. Allison

B7x, an inhibitory member of the B7/CD28 superfamily, is highly expressed in a broad range of nonhematopoietic organs, suggesting a role in maintaining peripheral tolerance. As endogenous B7x protein is expressed in pancreatic islets, we investigated whether the molecule inhibits diabetogenic responses. Transfer of disease-inducing BDC2.5 T cells into B7x-deficient mice resulted in a more aggressive form of diabetes than in wild-type animals. This exacerbation of disease correlated with higher frequencies of islet-infiltrating Th1 and Th17 cells. Conversely, local B7x overexpression inhibited the development of autoimmunity, as crossing diabetes-susceptible BDC2.5/B6g7 mice to animals overexpressing B7x in pancreatic islets abrogated disease induction. This protection was caused by the inhibition of IFN-γ production by CD4 T cells and not to a skewing or expansion of Th2 or regulatory T cells. The suppressive function of B7x was also supported by observations from another autoimmune model, experimental autoimmune encephalomyelitis, in which B7x-deficient mice developed exacerbated disease in comparison with wild-type animals. Analysis of central nervous system–infiltrating immune cells revealed that the loss of endogenous B7x resulted in expanded Th1 and Th17 responses. Data from these two autoimmune models provide evidence that B7x expression in the periphery acts as an immune checkpoint to prevent tissue-specific autoimmunity.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Jihong Li ◽  
Menglin Ma ◽  
Mahfuzur R. Sarker ◽  
Bruce A. McClane

ABSTRACT CodY is known to regulate various virulence properties in several Gram-positive bacteria but has not yet been studied in the important histotoxic and intestinal pathogen Clostridium perfringens. The present study prepared an isogenic codY-null mutant in C. perfringens type D strain CN3718 by insertional mutagenesis using the Targetron system. Western blot analysis indicated that, relative to wild-type CN3718 or a complementing strain, this isogenic codY mutant produces reduced levels of epsilon toxin (ETX). Using supernatants from cultures of the wild-type, codY-null mutant, and complementing strains, CodY regulation of ETX production was shown to have cytotoxic consequences for MDCK cells. The CodY regulatory effect on ETX production was specific, since the codY-null mutant still made wild-type levels of alpha-toxin and perfringolysin O. Sialidase activity measurements and sialidase Western blot analysis of supernatants from CN3718 and its isogenic derivatives showed that CodY represses overall exosialidase activity due to a reduced presence of NanH in culture supernatants. Inactivation of the codY gene significantly decreased the adherence of CN3718 vegetative cells or spores to host Caco-2 cells. Finally, the codY mutant showed increased spore formation under vegetative growth conditions, although germination of these spores was impaired. Overall, these results identify CodY as a global regulator of many C. perfringens virulence-associated properties. Furthermore, they establish that, via CodY, CN3718 coordinately regulates many virulence-associated properties likely needed for intestinal infection. IMPORTANCE Clostridium perfringens is a major human and livestock pathogen because it produces many potent toxins. C. perfringens type D strains cause intestinal infections by producing toxins, especially epsilon toxin (ETX). Previous studies identified CodY as a regulator of certain virulence properties in other Gram-positive bacteria. Our study now demonstrates that CodY is a global regulator of virulence-associated properties for type D strain CN3718. It promotes production of ETX, attachment of CN3718 vegetative cells or spores to host enterocyte-like Caco-2 cells, and spore germination; the last two effects may assist intestinal colonization. In contrast, CodY represses sporulation. These results provide the first evidence that CodY can function as a global regulator of C. perfringens virulence-associated properties and that this strain coordinately regulates its virulence-associated properties using CodY to increase ETX production, host cell attachment, and spore germination but to repress sporulation, as would be optimal during type D intestinal infection.


Sign in / Sign up

Export Citation Format

Share Document