scholarly journals Tissue-specific expression of B7x protects from CD4 T cell–mediated autoimmunity

2011 ◽  
Vol 208 (8) ◽  
pp. 1683-1694 ◽  
Author(s):  
Joyce Wei ◽  
P’ng Loke ◽  
Xingxing Zang ◽  
James P. Allison

B7x, an inhibitory member of the B7/CD28 superfamily, is highly expressed in a broad range of nonhematopoietic organs, suggesting a role in maintaining peripheral tolerance. As endogenous B7x protein is expressed in pancreatic islets, we investigated whether the molecule inhibits diabetogenic responses. Transfer of disease-inducing BDC2.5 T cells into B7x-deficient mice resulted in a more aggressive form of diabetes than in wild-type animals. This exacerbation of disease correlated with higher frequencies of islet-infiltrating Th1 and Th17 cells. Conversely, local B7x overexpression inhibited the development of autoimmunity, as crossing diabetes-susceptible BDC2.5/B6g7 mice to animals overexpressing B7x in pancreatic islets abrogated disease induction. This protection was caused by the inhibition of IFN-γ production by CD4 T cells and not to a skewing or expansion of Th2 or regulatory T cells. The suppressive function of B7x was also supported by observations from another autoimmune model, experimental autoimmune encephalomyelitis, in which B7x-deficient mice developed exacerbated disease in comparison with wild-type animals. Analysis of central nervous system–infiltrating immune cells revealed that the loss of endogenous B7x resulted in expanded Th1 and Th17 responses. Data from these two autoimmune models provide evidence that B7x expression in the periphery acts as an immune checkpoint to prevent tissue-specific autoimmunity.

2003 ◽  
Vol 198 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Alan D. Salama ◽  
Tanuja Chitnis ◽  
Jaime Imitola ◽  
Mohammed Javeed I. Ansari ◽  
Hisaya Akiba ◽  
...  

Experimental autoimmune encephalomyelitis (EAE) is mediated by autoantigen-specific T cells dependent on critical costimulatory signals for their full activation and regulation. We report that the programmed death-1 (PD-1) costimulatory pathway plays a critical role in regulating peripheral tolerance in murine EAE and appears to be a major contributor to the resistance of disease induction in CD28-deficient mice. After immunization with myelin oligodendrocyte glycoprotein (MOG) there was a progressive increase in expression of PD-1 and its ligand PD-L1 but not PD-L2 within the central nervous system (CNS) of mice with EAE, peaking after 3 wk. In both wild-type (WT) and CD28-deficient mice, PD-1 blockade resulted in accelerated and more severe disease with increased CNS lymphocyte infiltration. Worsening of disease after PD-1 blockade was associated with a heightened autoimmune response to MOG, manifested by increased frequency of interferon γ–producing T cells, increased delayed-type hypersensitivity responses, and higher serum levels of anti-MOG antibody. In vivo blockade of PD-1 resulted in increased antigen-specific T cell expansion, activation, and cytokine production. Interestingly, PD-L2 but not PD-L1 blockade in WT animals also resulted in disease augmentation. Our data are the first demonstration that the PD-1 pathway plays a critical role in regulating EAE.


1999 ◽  
Vol 190 (5) ◽  
pp. 733-740 ◽  
Author(s):  
Tammy T. Chang ◽  
Claudia Jabs ◽  
Raymond A. Sobel ◽  
Vijay K. Kuchroo ◽  
Arlene H. Sharpe

The importance of B7 costimulation in regulating T cell expansion and peripheral tolerance suggests that it may also play a significant regulatory role in the development of autoimmune disease. It is unclear whether B7 costimulation is involved only in the expansion of autoreactive T cells in the periphery, or if it is also required for effector activation of autoreactive T cells in the target organ for mediating tissue injury and propagating autoimmune disease. In this study, the role of B7–CD28 costimulation and the relative importance of B7 costimulators for the induction and effector phases of experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein (MOG) peptide were examined. Wild-type, B7-1/B7-2–deficient mice, or CD28-deficient C57BL/6 mice were immunized with MOG 35-55 peptide. Mice lacking both B7-1 and B7-2 or CD28 showed no or minimal clinical signs of EAE and markedly reduced inflammatory infiltrates in the brain and spinal cord. However, mice lacking either B7-1 or B7-2 alone developed clinical and pathologic EAE that was comparable to EAE in wild-type mice, indicating overlapping functions for B7-1 and B7-2. Resistance to EAE was not due to a lack of induction of T helper type 1 (Th1) cytokines, since T cells from B7-1/B7-2−/− mice show reduced proliferative responses, but greater interferon γ production compared with T cells from wild-type mice. To study the role of B7 molecules in the effector phase of the disease, MOG 35-55–specific T lines were adoptively transferred into the B7-1/B7-2−/− and wild-type mice. Clinical and histologic EAE were markedly reduced in B7-1/B7-2−/− compared with wild-type recipient mice. These results demonstrate that B7 costimulation has critical roles not only in the initial activation and expansion of MOG-reactive T cells, but also in the effector phase of encephalitogenic T cell activation within the central nervous system.


1996 ◽  
Vol 184 (6) ◽  
pp. 2271-2278 ◽  
Author(s):  
Susan D. Wolf ◽  
Bonnie N. Dittel ◽  
Fridrika Hardardottir ◽  
Charles A. Janeway

Experimental autoimmune encephalomyelitis (EAE) is an animal model for autoimmune central nervous system disease mediated by CD4 T cells. To examine the role of B cells in the induction of EAE, we used B10.PL (I-Au) mice rendered deficient in B cells by deletion of their μ chain transmembrane region (B10.PLμMT). By immunizing B10.PL and B10.PLμMT mice with the NH-terminal myelin basic protein encephalitogenic peptide Ac1-11, we observed no difference in the onset or severity of disease in the absence of mature B cells. There was, however, a greater variation in disease onset, severity, and especially of recovery in the B cell–deficient mice compared to controls. B10.PLμMT mice rarely returned to normal in the absence of B cells. Taken together, our data suggest that B cells do not play a role in the activation of encephalitogenic T cells, but may contribute to the immune modulation of acute EAE. The mechanisms to explain these effects are discussed.


2001 ◽  
Vol 193 (6) ◽  
pp. 713-726 ◽  
Author(s):  
DeRen Huang ◽  
Jintang Wang ◽  
Pia Kivisakk ◽  
Barrett J. Rollins ◽  
Richard M. Ransohoff

Monocyte chemoattractant protein (MCP)-1 plays a critical role in innate immunity by directing the migration of monocytes into inflammatory sites. Recent data indicated a function for this chemokine in adaptive immunity as a regulator of T cell commitment to T helper cell type 2 (Th2) effector function. Studies in a Th1-dependent animal model, experimental autoimmune encephalomyelitis (EAE), showed that MCP-1 was highly expressed in the central nervous system (CNS) of affected rodents, and MCP-1 antibodies could block relapses of the disease. Mice deficient for the major MCP-1 receptor, CC chemokine receptor (CCR)2, did not develop EAE after active immunization but generated effector cells that could transfer the disease to naive wild-type recipients. We analyzed EAE in mice deficient for MCP-1 to define the relevant ligand for CCR2, which responds to murine MCP-1, MCP-2, MCP-3, and MCP-5. We found that C57BL/6 MCP-1–null mice were markedly resistant to EAE after active immunization, with drastically impaired recruitment of macrophages to the CNS, yet able to generate effector T cells that transferred severe disease to naive wild-type recipients. By contrast, adoptive transfer of primed T cells from wild-type mice into naive MCP-1–null recipients did not mediate clinical EAE. On the SJL background, disruption of the MCP-1 gene produced a milder EAE phenotype with diminished relapses that mimicked previous findings using anti–MCP-1 antibodies. There was no compensatory upregulation of MCP-2, MCP-3, or MCP-5 in MCP-1–null mice with EAE. These results indicated that MCP-1 is the major CCR2 ligand in mice with EAE, and provided an opportunity to define the role of MCP-1 in EAE. Compared with wild-type littermates, MCP-1−/− mice exhibited reduced expression of interferon γ in draining lymph node and CNS and increased antigen-specific immunoglobulin G1 antibody production. Taken together, these data demonstrate that MCP-1 is crucial for Th1 immune responses in EAE induction and that macrophage recruitment to the inflamed CNS target organ is required for primed T cells to execute a Th1 effector program in EAE.


2000 ◽  
Vol 192 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Cong-Qiu Chu ◽  
Susan Wittmer ◽  
Dyana K. Dalton

Mice deficient in interferon (IFN)-γ or IFN-γ receptor develop progressive and fatal experimental autoimmune encephalomyelitis (EAE). We demonstrate that CD4 T cells lacking IFN-γ production were required to passively transfer EAE, indicating that they were disease-mediating cells in IFN-γ knockout (KO) mice. IFN-γ KO mice accumulated 10–16-fold more activated CD4 T cells (CD4+CD44hi) than wild-type mice in the central nervous system during EAE. CD4+CD44hi T cells in the spleen and central nervous system of IFN-γ KO mice during EAE showed markedly increased in vivo proliferation and significantly decreased ex vivo apoptosis compared with those of wild-type mice. IFN-γ KO CD4+CD44hi T cells proliferated extensively to antigen restimulation in vitro and accumulated larger numbers of live CD4+ CD44hi T cells. IFN-γ completely suppressed proliferation and significantly induced apoptosis of CD4+CD44hi T cells responding to antigen and hence inhibited accumulation of live, activated CD4 T cells. We thus present novel in vivo and in vitro evidence that IFN-γ may limit the extent of EAE by suppressing expansion of activated CD4 T cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Nicholas Dopkins ◽  
William Becker ◽  
Kathryn Miranda ◽  
Mike Walla ◽  
Prakash Nagarkatti ◽  
...  

Tryptamine is a naturally occurring monoamine alkaloid which has been shown to act as an aryl hydrocarbon receptor (AHR) agonist. It is produced in large quantities from the catabolism of the essential amino acid tryptophan by commensal microorganisms within the gastrointestinal (GI) tract of homeothermic organisms. Previous studies have established microbiota derived AHR ligands as potent regulators of neuroinflammation, further defining the role the gut-brain axis plays in the complex etiology in multiple sclerosis (MS) progression. In the current study, we tested the ability of tryptamine to ameliorate symptoms of experimental autoimmune encephalomyelitis (EAE), a murine model of MS. We found that tryptamine administration attenuated clinical signs of paralysis in EAE mice, decreased the number of infiltrating CD4+ T cells in the CNS, Th17 cells, and RORγ T cells while increasing FoxP3+Tregs. To test if tryptamine acts through AHR, myelin oligodendrocyte glycoprotein (MOG)-sensitized T cells from wild-type or Lck-Cre AHRflox/flox mice that lacked AHR expression in T cells, and cultured with tryptamine, were transferred into wild-type mice to induce passive EAE. It was noted that in these experiments, while cells from wild-type mice treated with tryptamine caused marked decrease in paralysis and attenuated neuroinflammation in passive EAE, similar cells from Lck-Cre AHRflox/flox mice treated with tryptamine, induced significant paralysis symptoms and heightened neuroinflammation. Tryptamine treatment also caused alterations in the gut microbiota and promoted butyrate production. Together, the current study demonstrates for the first time that tryptamine administration attenuates EAE by activating AHR and suppressing neuroinflammation.


Blood ◽  
2008 ◽  
Vol 112 (2) ◽  
pp. 256-263 ◽  
Author(s):  
Astrid E. Cardona ◽  
Margaret E. Sasse ◽  
Liping Liu ◽  
Sandra M. Cardona ◽  
Makiko Mizutani ◽  
...  

Abstract In vitro studies have implicated chemokine receptors in consumption and clearance of specific ligands. We studied the role that various signaling chemokine receptors play during ligand homeostasis in vivo. We examined the levels of ligands in serum and CNS tissue in mice lacking chemokine receptors. Compared with receptor-sufficient controls, Cx3cr1−/− mice exhibited augmented levels of CX3CL1 both in serum and brain, and circulating levels of CXCL1 and CXCL2 were increased in Cxcr2−/− mice. CCR2-deficient mice showed significantly increased amounts of circulating CCL2 compared with wild-type mice. Cxcr3−/− mice revealed increased levels of circulating and brain CXCL10 after experimental autoimmune encephalomyelitis (EAE) induction. CCR2-deficient peripheral blood and resident peritoneal cells exhibited reduced binding capacity and biologic responses to the CCR1 ligand CCL3, suggesting that elevated levels of CCR2 ligands had down-regulated CCR1. The results indicate that signaling chemokine receptors clear chemokines from circulation and tissues. These homeostatic functions of signaling chemokine receptors need to be integrated into safety and efficacy calculations when considering therapeutic receptor blockade.


Sign in / Sign up

Export Citation Format

Share Document