ecological genetics
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 22)

H-INDEX

40
(FIVE YEARS 2)

Genetics ◽  
2022 ◽  
Author(s):  
Marinela Dukić ◽  
Kirsten Bomblies

Abstract The number and placement of meiotic crossover events during meiosis has important implications for the fidelity of chromosome segregation as well as patterns of inheritance. Despite the functional importance of recombination, recombination landscapes vary widely among and within species, and this can have a strong impact on evolutionary processes. A good knowledge of recombination landscapes is important for model systems in evolutionary and ecological genetics, since it can improve interpretation of genomic patterns of differentiation and genome evolution, and provides an important starting point for understanding the causes and consequences of recombination rate variation. Arabidopsis arenosa is a powerful evolutionary genetic model for studying the molecular basis of adaptation and recombination rate evolution. Here we generate genetic maps for two diploid A. arenosa individuals from distinct genetic lineages where we have prior knowledge that meiotic genes show evidence of selection. We complement the genetic maps with cytological approaches to map and quantify recombination rates, and test the idea that these populations might have distinct patterns of recombination. We explore how recombination differs at the level of populations, individuals, sexes and genomic regions. We show that the positioning of crossovers along a chromosome correlates with their number, presumably a consequence of crossover interference, and discuss how this effect can cause differences in recombination landscape among sexes or species. We identify several instances of female segregation distortion. We found that averaged genome-wide recombination rate is lower and sex differences subtler in A. arenosa than in A. thaliana.


Author(s):  
Simon Crameri ◽  
Simone Fior ◽  
Stefan Zoller ◽  
Alex Widmer

Understanding the genetic changes associated with the evolution of biological diversity is of fundamental interest to molecular ecologists. The assessment of genetic variation at hundreds or thousands of unlinked genetic loci forms a sound basis to address questions ranging from micro- to macro-evolutionary timescales, and is now possible thanks to advances in sequencing technology. Major difficulties are associated with i) the lack of genomic resources for many taxa, especially from tropical biodiversity hotspots, ii) scaling the numbers of individuals analyzed and loci sequenced, and iii) building tools for reproducible bioinformatic analyses of such datasets. To address these challenges, we developed a set of target capture probes for phylogenomic studies of the highly diverse, pantropically distributed and economically significant rosewoods (Dalbergia spp.), explored the performance of an overlapping probe set for target capture across the legume family (Fabaceae), and built a general-purpose bioinformatics pipeline. Phylogenomic analyses of Dalbergia species from Madagascar yielded highly resolved and well supported hypotheses of evolutionary relationships. Population genomic analyses identified differences between closely related species and revealed the existence of a potentially new species, suggesting that the diversity of Malagasy Dalbergia species has been underestimated. Analyses at the family level corroborated previous findings by the recovery of monophyletic subfamilies and many well-known clades, as well as high levels of gene tree discordance, especially near the root of the family. The new genomic and bioinformatics resources will hopefully advance systematics and ecological genetics research in legumes, and promote conservation of the highly diverse and endangered Dalbergia rosewoods.


2021 ◽  
Author(s):  
Simon Crameri ◽  
Simone Fior ◽  
Stefan Zoller ◽  
Alex Widmer

Understanding the genetic changes associated with the evolution of biological diversity is of fundamental interest to molecular ecologists. The assessment of genetic variation at hundreds or thousands of unlinked genetic loci forms a sound basis to address questions ranging from micro- to macro-evolutionary timescales, and is now possible thanks to advances in sequencing technology. Major difficulties are associated with i) the lack of genomic resources for many taxa, especially from tropical biodiversity hotspots, ii) scaling the numbers of individuals analyzed and loci sequenced, and iii) building tools for reproducible bioinformatic analyses of such datasets. To address these challenges, we developed a set of target capture probes for phylogenomic studies of the highly diverse, pantropically distributed and economically significant rosewoods (Dalbergia spp.), explored the performance of an overlapping probe set for target capture across the legume family (Fabaceae), and built a general-purpose bioinformatics pipeline. Phylogenomic analyses of Dalbergia species from Madagascar yielded highly resolved and well supported hypotheses of evolutionary relationships. Population genomic analyses identified differences between closely related species and revealed the existence of a potentially new species, suggesting that the diversity of Malagasy Dalbergia species has been underestimated. Analyses at the family level corroborated previous findings by the recovery of monophyletic subfamilies and many well-known clades, as well as high levels of gene tree discordance, especially near the root of the family. The new genomic and bioinformatics resources will hopefully advance systematics and ecological genetics research in legumes, and promote conservation of the highly diverse and endangered Dalbergia rosewoods.


Author(s):  
Xinmin An ◽  
Kai Gao ◽  
Zhong Chen ◽  
Juan Li ◽  
Xiong Yang ◽  
...  

Populus has a wide ecogeographical range spanning the Northern Hemisphere, and exhibits abundant distinct species and hybrids globally. Populus tomentosa Carr. is widely distributed and cultivated in the eastern region of Asia, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. Reference genomes are available for several Populus species, however, our goals were to produce a very high quality de novo, chromosome-level genome assembly in P. tomentosa genome that could serve as a reference for evolutionary and ecological studies of hybrid speciation. Here, combining long-read sequencing and Hi-C scaffolding, we present a high-quality, haplotype-resolved genome assembly. The genome size was 740.2 Mb, with a contig N50 size of 5.47 Mb and a scaffold N50 size of 46.68 Mb, consisting of 38 chromosomes, as expected with the known diploid chromosome number (2n=2x=38). A total of 59,124 protein-coding genes were identified. Phylogenomic analyses revealed that P. tomentosa is comprised of two distinct subgenomes, which we deomonstrate is likely to have resulted from hybridization between Populus adenopoda as the female parent and Populus alba var. pyramidalis as the male parent, approximately 3.93 Mya. Although highly colinear, significant structural variation was also found between the two subgenomes. Our study provides a valuable resource for ecological genetics and forest biotechnology.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249893
Author(s):  
Estelle Postic ◽  
Yannick Outreman ◽  
Stéphane Derocles ◽  
Caroline Granado ◽  
Anne Le Ralec

Due to their ability to parasitize various insect species, generalist parasitoids are widely used as biological control agents. They can be mass-reared and released in agroecosystems to control several pest species in various crops. However, the existence of genetic differentiation among populations of generalist parasitoid species is increasingly recognized and this can be associated with an adaptation to local conditions or to a reduced range of host species. Moreover, constraints of mass-rearing conditions can alter genetic variation within parasitoid populations released. These features could be associated with a reduced efficiency of the control of targeted pest species. Here, we focused on strawberry greenhouses where the control of aphids with the generalist parasitoid Aphidius ervi appears to be inefficient. We investigated whether this inefficiency may have both genetic and ecological bases comparing wild and commercial populations of A. ervi. We used two complementary genetic approaches: one based on the mitochondrial marker COI and one based on microsatellite markers. COI analysis showed a genetic differentiation within the A. ervi species, but the structure was neither associated with the commercial/wild status nor with host species factors. On the other hand, using microsatellite markers, we showed a genetic differentiation between commercial and wild A. ervi populations associated with a loss of genetic diversity within the mass-reared populations. Our ecological genetics study may potentially explain the weak efficiency of biological control of aphids in protected strawberry crops and enable to provide some insights to improve biological control.


2021 ◽  
Vol 40 ◽  
Author(s):  
Jakub Skorupski ◽  
Magdalena Szenejko ◽  
Martyna Gruba-Tabaka ◽  
Przemysław Śmietana ◽  
Remigiusz Panicz

Polar and subpolar regions are known for their particular vulnerability and sensitivity to the detrimental effects of non-indigenous species, which is well exemplified by the Nootka lupin (Lupinus nootkatensis) spread in Iceland. Since understanding the population and ecological genetics of invasive alien species offers hope for counteracting harmful biological invasions, the objective of the present study was to investigate interspecific variation in L. nootkatensis in Iceland in relation to a native population in Alaska. Moreover, we aimed to assess whether internal transcribed spacer 2 (ITS2) has sufficient phylogenetic applicability for a large-scale screening of the genetic diversity of a non-indigenous population of this species. This study, which is the first attempt to investigate the genetic diversity of the Nootka lupin in Iceland, included plant samples from eight locations in Iceland and one in Alaska. The analyses included genotyping by sequencing of the 417-nucleotide fragment of the 5.8S ribosomal RNA, ITS2 and part of the large subunit ribosomal RNA (GenBank MT026578-MT026580, MT077004). The main findings showed the presence of five previously unexplained single-nucleotide polymorphisms (SNPs); however, their discriminatory power for Icelandic populations was relatively low, since polymorphism information content (PIC) values ranged from 0.0182 to 0.0526, with average heterozygosity 0.0296. Concomitantly, analysis of multilocus genotypes (MLG) revealed sufficient differences in MLGs variants and their frequency to form genotypic patterns unique for Alaskan and Icelandic populations, revealing an internal genetic structure of the studied group. The proposed SNP panel needs to be supplemented with other nuclear and organellar markers.


Author(s):  
David Wool ◽  
Naomi Paz ◽  
Leonid Friedman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document