scholarly journals Xanthine dehydrogenase is transported to the Drosophila eye.

Genetics ◽  
1989 ◽  
Vol 123 (3) ◽  
pp. 503-509 ◽  
Author(s):  
A G Reaume ◽  
S H Clark ◽  
A Chovnick

Abstract The rosy (ry) locus in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase. Mutants that have no enzyme activity are characterized by a brownish eye color phenotype reflecting a deficiency in the red eye pigment. This report demonstrates that enzyme which is synthesized in some tissue other than the eye is transported and sequestered at the eye. Previous studies find that no leader sequence is associated with this molecule but a peroxisomal targeting sequence has been noted, and the enzyme has been localized to peroxisomes. This represents a rare example of an enzyme involved in intermediary metabolism being transported from one tissue to another and may also be the first example of a peroxisomal protein being secreted from a cell.

1981 ◽  
Vol 23 (4) ◽  
pp. 597-609 ◽  
Author(s):  
M. M. Bentley ◽  
J. H. Williamson ◽  
M. J. Oliver

The effects of dietary sodium molybdate and sodium tungstate on eye color and aldehyde oxidase and xanthine dehydrogenase activities have been determined in Drosophila melanogaster. Dietary sodium tungstate administration has been used as a screening procedure to identify two new lxd alleles. Tungstate administration results in increased frequencies of "brown-eyed" flies in lxd stocks and a coordinate decrease in AO and XDH activities in all genotypes tested. The two new lxd alleles affect AO and XDH in a qualitatively but not quantitatively similar fashion to the original lxd allele. AO and XDH activity and AO-CRM levels appear much more sensitive to mutational perturbations of this gene-enzyme system than do XDH-CRM levels in the genotypes tested.


Genome ◽  
1993 ◽  
Vol 36 (1) ◽  
pp. 162-165 ◽  
Author(s):  
James M. Humphreys ◽  
Arthur J. Hilliker ◽  
John P. Phillips

We have previously shown that homozygous mutants of Drosophila melanogaster deficient in the oxygen radical scavengers, CuZn superoxide dismutase or urate, are adult viable and yet hypersensitive to the oxygen radical-generating agent, paraquat. Thus, paraquat could be used as a selective agent to identify adult-viable mutants potentially defective in other, perhaps unknown, oxygen defense functions. Here we report the successful use of paraquat hypersensitivity in the isolation of X-linked, ethylmethanesulfonate-induced mutations affecting oxygen defense in Drosophila melanogaster. Two paraquat hypersensitive mutants were identified that, by complementation analysis, were shown to be new alleles of the maroon-like gene. In addition to paraquat hypersensitivity, both alleles confer a maternally affected dark brown eye color and a complete lack of enzymatically active xanthine dehydrogenase, both of which are characteristic phenotypes of known maroon-like alleles. We conclude that the lack of xanthine dehydrogenase in these mutants leads to the absence of urate, which is the proximate cause of paraquat sensitivity. Because our search for such mutants on the X chromosome revealed two alleles of only a single selectable gene, we anticipate that the total number of major oxygen defense genes in the complete Drosophila genome may not be large.Key words: paraquat, maroon-like, xanthine dehydrogenase, oxygen defense.


Science ◽  
1960 ◽  
Vol 131 (3416) ◽  
pp. 1810-1811 ◽  
Author(s):  
Edward Glassman ◽  
William Pinkerton

Two "allelic" Drosophila melanogaster mutants which are deficient in xanthine dehydrogenase can complement one another in heterozygotes. This complementation is due to the production of small amounts of xanthine dehydrogenase, enough of which is present to restore the normal eye color. However, not enough of the enzyme is present to produce normal amounts of the enzyme products, or to reduce the accumulation of the enzyme substrates to levels found in wild-type flies.


1982 ◽  
Vol 24 (1) ◽  
pp. 11-17 ◽  
Author(s):  
M. M. Bentley ◽  
J. H. Williamson

The effects of five new mal alleles on aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) activities and CRM levels in Drosophila melanogaster are described. These alleles were isolated by taking full advantage of the pleiotropic phenotype exhibited by all previously described mal alleles and represent at least three unique examples of mal function. At least one of these alleles is a representative of a new complementation group. Two other alleles exhibit a wild-type eye color in homozygous stock and one of these is "leaky", exhibiting some 50% of the XDH activity normally found in Oregon-R control flies and some 12% of the AO activity. CRM and activity levels have been quantitated for both enzymes in all allelic heterozygotes. XDH-CRM levels vary only slightly around wild-type levels while AO-CRM levels appear much more sensitive to mutational alterations.


1979 ◽  
Vol 21 (4) ◽  
pp. 457-471 ◽  
Author(s):  
Michael M. Bentley ◽  
John H. Williamson

The isolation and characterization of 16 alleles of the cinnamon (cin, 1-0.0) locus in Drosophila melanogaster are described. The effects of cin on viability and the maternal effect of cin+ on eye color have been separated from each other as well as from the deficiency for aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) activities. These 16 alleles have been assigned to four complementation groups based on analysis of AO and XDH activities in all heteroallelic female combinations. Zygotic complementation for lethality and eye color has been characterized and allows the ordering of cin alleles in a consistent pattern for the ability to produce viable zygotes and/or complement for the eye color phene. Several complementing cin combinations were analyzed for heat stability of AO. In all cases, AO from allelic heterozygotes was more heat labile than wild-type AO. One cin allele, cin13, produces heat labile AO in combination with cin+ from Oregon-R, hence exhibiting a "dominant" heat stability phenotype.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1257-1265 ◽  
Author(s):  
Hsiao-Pei Yang ◽  
Ana Y Tanikawa ◽  
Wayne A Van Voorhies ◽  
Joana C Silva ◽  
Alexey S Kondrashov

Abstract We induced mutations in Drosophila melanogaster males by treating them with 21.2 mm ethyl methanesulfonate (EMS). Nine quantitative traits (developmental time, viability, fecundity, longevity, metabolic rate, motility, body weight, and abdominal and sternopleural bristle numbers) were measured in outbred heterozygous F3 (viability) or F2 (all other traits) offspring from the treated males. The mean values of the first four traits, which are all directly related to the life history, were substantially affected by EMS mutagenesis: the developmental time increased while viability, fecundity, and longevity declined. In contrast, the mean values of the other five traits were not significantly affected. Rates of recessive X-linked lethals and of recessive mutations at several loci affecting eye color imply that our EMS treatment was equivalent to ∼100 generations of spontaneous mutation. If so, our data imply that one generation of spontaneous mutation increases the developmental time by 0.09% at 20° and by 0.04% at 25°, and reduces viability under harsh conditions, fecundity, and longevity by 1.35, 0.21, and 0.08%, respectively. Comparison of flies with none, one, and two grandfathers (or greatgrandfathers, in the case of viability) treated with EMS did not reveal any significant epistasis among the induced mutations.


Genetics ◽  
1974 ◽  
Vol 76 (2) ◽  
pp. 289-299
Author(s):  
Margaret McCarron ◽  
William Gelbart ◽  
Arthur Chovnick

ABSTRACT A convenient method is described for the intracistronic mapping of genetic sites responsible for electrophoretic variation of a specific protein in Drosophila melanogaster. A number of wild-type isoalleles of the rosy locus have been isolated which are associated with the production of electrophoretically distinguishable xanthine dehydrogenases. Large-scale recombination experiments were carried out involving null enzyme mutants induced on electrophoretically distinct wild-type isoalleles, the genetic basis for which is followed as a nonselective marker in the cross. Additionally, a large-scale recombination experiment was carried out involving null enzyme rosy mutants induced on the same wild-type isoallele. Examination of the electrophoretic character of crossover and convertant products recovered from the latter experiment revealed that all exhibited the same parental electrophoretic character. In addition to documenting the stability of the xanthine dehydrogenase electrophoretic character, this observation argues against a special mutagenesis hypothesis to explain conversions resulting from allele recombination studies.


Genetics ◽  
1991 ◽  
Vol 129 (4) ◽  
pp. 1099-1109 ◽  
Author(s):  
A G Reaume ◽  
D A Knecht ◽  
A Chovnick

Abstract The rosy gene in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase (XDH). Mutants that have no enzyme activity are characterized by a brownish eye color phenotype reflecting a deficiency in the red eye pigment. Xanthine dehydrogenase is not synthesized in the eye, but rather is transported there. The present report describes the ultrastructural localization of XDH in the Drosophila eye. Three lines of evidence are presented demonstrating that XDH is sequestered within specific vacuoles, the type II pigment granules. Histochemical and antibody staining of frozen sections, as well as thin layer chromatography studies of several adult genotypes serve to examine some of the factors and genic interactions that may be involved in transport of XDH, and in eye pigment formation. While a specific function for XDH in the synthesis of the red, pteridine eye pigments remains unknown, these studies present evidence that: (1) the incorporation of XDH into the pigment granules requires specific interaction between a normal XDH molecule and one or more transport proteins; (2) the structural integrity of the pigment granule itself is dependent upon the presence of a normal balance of eye pigments, a notion advanced earlier.


1968 ◽  
Vol 23 (3) ◽  
pp. 376-386 ◽  
Author(s):  
Armin Wessing ◽  
Dieter Eichelberg

The Malpighian tubules of Drosophila melanogaster accumulate a great number of substances, many of which fluoresce. This paper is concerned with the identification of these substances by chromatography and their location by fluorescentmicroscopy (fig. 4, 5). It appears that they mainly belong to the following three groups: Pteridines, tryptophane and some of its metabolites, and riboflavine (tab. 1).The pattern of fluorescent substances of the eye color mutants cn, v, se, st, bw, ry, and w vary significantly. The patterns of these mutants are compared and discussed with that of the wild-type.


Sign in / Sign up

Export Citation Format

Share Document