Genetic instability in Drosophila melanogaster mediated by hobo transposable elements.

Genetics ◽  
1993 ◽  
Vol 133 (2) ◽  
pp. 315-334
Author(s):  
F Sheen ◽  
J K Lim ◽  
M J Simmons

Abstract Eight independent recessive lethal mutations that occurred on derivatives of an unstable X chromosome (Uc) in Drosophila melanogaster were analyzed by a combination of genetic and molecular techniques. Seven of the mutations were localized to complementation groups in polytene chromosome bands 6E; 7A. In situ hybridization and genomic Southern analysis established that hobo transposable elements were associated with all seven of the mutations. Six mutations involved deletions of DNA, some of which were large enough to be seen cytologically, and in each case, a hobo element was inserted at the junction of the deletion's breakpoints. A seventh mutation was associated with a small inversion between 6F and 7A-B and a hobo element was inserted at one of its breakpoints. One of the mutant chromosomes had an active hobo-mediated instability, manifested by the recurrent production of mutations of the carmine (cm) locus in bands 6E5-6. This instability persisted for many generations in several sublines of an inbred stock. Two levels of instability, high and basal, were distinguished. Sublines with high instability had two hobo elements in the 6E-F region and produced cm mutations by deleting the segment between the two hobos; a single hobo element remained at the junction of the deletion breakpoints. Sublines with low instability had only one hobo element in the 6E-F region, but they also produced deletion mutations of cm. Both types of sublines also acquired hobo-mediated inversions on the X chromosome. Collectively, these results suggest that interactions between hobo elements are responsible for the instability of Uc. It is proposed that interactions between widely separated elements produce gross rearrangements that restructure the chromosome and that interactions between nearby elements cause regional instabilities manifested by the recurrence of specific mutations. These regional instabilities may arise when a copy of hobo transposes a short distance, creating a pair of hobos that can interact to produce small rearrangements.

Genetics ◽  
1992 ◽  
Vol 130 (3) ◽  
pp. 569-583
Author(s):  
D F Eberl ◽  
L A Perkins ◽  
M Engelstein ◽  
A J Hilliker ◽  
N Perrimon

Abstract Polytene section 17 of the X chromosome of Drosophila melanogaster, previously known to contain six putative lethal complementation groups important in oogenesis and embryogenesis, has here been further characterized genetically and developmentally. We constructed fcl+Y, a duplication of this region, which allowed us to conduct mutagenesis screens specific for the region and to perform complementation analyses (previously not possible). We recovered 67 new lethal mutations which defined 15 complementation groups within Df(1)N19 which deletes most of polytene section 17. The zygotic lethal phenotypes of these and preexisting mutations within polytene section 17 were examined, and their maternal requirements were analysed in homozygous germline clones using the dominant female sterile technique. We present evidence that an additional gene, which produces two developmentally regulated transcripts, is located in this region and is involved in embryogenesis, although no mutations in this gene were identified. In this interval of 37 to 43 polytene chromosome bands we have defined 17 genes, 12 (71%) of which are of significance to oogenesis or embryogenesis.


Genetics ◽  
1978 ◽  
Vol 88 (4) ◽  
pp. 723-742 ◽  
Author(s):  
Michael W Young ◽  
B H Judd

ABSTRACT From earlier work, there appears to be an underlying one-to-one correspondence of polytene chromosome bands and complementation groups within a sizeable, continuous X-chromosome segment, 3A1-3C7 (Judd, Shen and Kaufman 1972; Lefevre and Green 1972). However, most of the data supporting this one-to-one relation of bands and genes were gathered from mutants that upset vital functional units, thus leading to lethality. Among this series of mutants, only four loci, zeste, white, roughest and verticals, have no known lethal alleles. If phenotypic changes less drastic than lethality result from the loss of other chromosomal segments, they probably would not have been recognized in the earlier studies.—We report here some chromosomal sequences localized in 3A, 3B, and 3C whose loss effects no lethal change in the development of the animal. A portion of the 3A3-3A4 region can be disrupted in a nonlethal fashion, yet this sequence does not seem to be a part of either the zeste locus or l(1)zw1, which are known to be located in these bands. Two more complementation groups have been discovered that have no lethal alleles and map to 3B4-3B6; a third falls within 3B1-2. The loss of a sequence in 3C2-3 is tolerated without any genetically observable effect. Between 3C7 and the boundary of 3D there is at least one more sequence that behaves in this manner.—The discovery of these units, which are not allelic to any of the loci previously known, makes it clear that division 3B contains more genes (i.e., complementation groups) than polytene chromosome bands, while portions of 3A and 3C seem to have no functional significance. Accordingly many polytene chromosome bands may be composites of several complementing functional units. This investigation also indicates that there are chromosomal segments that are seemingly dispensible and thus function in a manner that is difficult or impossible to define with available methods.


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 647-656
Author(s):  
William B Eggleston ◽  
Nac R Rim ◽  
Johng K Lim

Abstract The structure of chromosomal inversions mediated by hobo transposable elements in the Uc-1 X chromosome was investigated using cytogenetic and molecular methods. Uc-1 contains a phenotypically silent hobo element inserted in an intron of the Notch locus. Cytological screening identified six independent Notch mutations resulting from chromosomal inversions with one breakpoint at cytological position 3C7, the location of Notch. In situ hybridization to salivary gland polytene chromosomes determined that both ends of each inversion contained hobo and Notch sequences. Southern blot analyses showed that both breakpoints in each inversion had hobo-Notch junction fragments indistinguishable in structure from those present in the Uc-1 X chromosome prior to the rearrangements. Polymerase chain reaction amplification of the 12 hobo-Notch junction fragments in the six inversions, followed by DNA sequence analysis, determined that each was identical to one of the two hobo-Notch junctions present in Uc-1. These results are consistent with a model in which hobo-mediated inversions result from homologous pairing and recombination between a pair of hobo elements in reverse orientation.


Genetics ◽  
1980 ◽  
Vol 95 (1) ◽  
pp. 95-110 ◽  
Author(s):  
Arthur J Hilliker ◽  
Stephen H Clark ◽  
Arthur Chovnick ◽  
William M Gelbart

ABSTRACT This report describes the genetic analysis of a region of the third chromosome of Drosophila melanogaster extending from 87D2-4 to 87E12-F1, an interval of 23 or 24 polytene chromosome bands. This region includes the rosy (ry, 3-52.0) locus, carrying the structural information for xanthine dehydrogenase (XDH). We have, in recent years, focused attention on the genetic regulation of the rosy locus and, therefore, wished to ascertain in detail the immediate genetic environmcnt of this locus. Specifically, we question if rosy is a solitary genetic unit or part of a larger complex genetic unit encompassing adjacent genes. Our data also provide opportunity to examine further the relationship between euchromatic gene distrihution and polytene chromosome structure.—The results of our genetic dissection of the rosy microregion substantiate the conclusion drawn earlier (SCHALET, KERNAGHAN and CHOVNICK 1964) that the rosy locus is the only gene in this region concerned with XDH activity and that all adjacent genetic units are functionally, as well as spatially, distinct Erom the rosy gene. Within the rosy micro-region, we observed a close correspondence between the number of complementation groups (21) and the number of polytene chromosome bands (23 or 24). Consideration of this latter observation in conjunction with those of similar studies of other chhromosomal regions supports the hypothesis that each polytene chromosome band corresponds to a single genetic unit.


Genetics ◽  
1989 ◽  
Vol 121 (2) ◽  
pp. 313-331 ◽  
Author(s):  
N Perrimon ◽  
D Smouse ◽  
G L Miklos

Abstract We have conducted a genetic and developmental analysis of the 26 contiguous genetic complementation groups within the 19D3-20F2 interval of the base of the X chromosome, a region of 34 polytene bands delimited by the maroon-like and suppressor of forked loci. Within this region there are four loci which cause visible phenotypes but which have little or no effect on zygotic viability (maroon-like, little fly, small optic lobes and sluggish). There are 22 loci which, when mutated, are zygotic lethals and three of these, legless/runt, folded gastrulation and 13E3, have severe effects on embryonic development. In addition, three visible phenotypes have been defined only by overlapping deficiencies (melanized-like, tumorous head, and varied outspread). We have analyzed the lethal phases and maternal requirement of 58 mutations at 22 of the zygotic lethal loci by means of germline clone analysis using the dominant female sterile technique. Additionally, all lethal complementation groups, as well as a specific subset of deficiencies, have been studied histologically for defects in the development of the central and peripheral embryonic nervous systems.


1992 ◽  
Vol 60 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Brian Charlesworth ◽  
Angela Lapid ◽  
Darlene Canada

SummaryData were collected on the distribution of nine families of transposable elements among second and third chromosomes isolated from a natural population of Drosophila melanogaster, by means of in situ hybridization of element probes to polytene chromosomes. It was found that the copy numbers per chromosome in the distal sections of the chromosome arms followed a Poisson distribution. Elements appeared to be distributed randomly along the distal sections of the chromosome arms. There was no evidence for linkage disequilibrium in the distal sections of the chromosomes, but some significant disequilibrium was detected in proximal regions. There were many significant correlations between different element families with respect to the identity of the sites that were occupied in the sample. There were also significant correlations between families with respect to sites at which elements achieved relatively high frequencies. Element frequencies per chromosome band were generally low in the distal sections, but were higher proximally. These results are discussed in the light of models of the population dynamics of transposable elements. It is concluded that they provide strong evidence for the operation of a force or forces opposing transpositional increase in copy number. The data suggest that the rate of transposition perelement per generation is of the order of 10−4, for the elements included in this study.


2000 ◽  
Vol 75 (3) ◽  
pp. 275-284 ◽  
Author(s):  
XULIO MASIDE ◽  
STAVROULA ASSIMACOPOULOS ◽  
BRIAN CHARLESWORTH

The rates of movement of 11 families of transposable elements of Drosophila melanogaster were studied by means of in situ hybridization of probes to polytene chromosomes of larvae from a long-term mutation accumulation experiment. Replicate mutation-accumulation lines carrying second chromosomes derived from a single common ancestral chromosome were maintained by backcrosses of single males heterozygous for a balancer chromosome and a wild-type chromosome, and were scored after 116 generations. Twenty-seven transpositions and 1 excision were detected using homozygous viable and fertile second chromosomes, for a total of 235056 potential sources of transposition events and a potential 252880 excision events. The overall transposition rate per element per generation was 1·15×10−4 and the excision rate was 3·95×10−6. The single excision (of a roo element) was due to recombination between the element's long terminal repeats. A survey of the five most active elements among nine homozygous lethal lines revealed no significant difference in the estimates of transposition and excision rates from those from viable lines. The excess of transposition over excision events is in agreement with the results of other in situ hybridization experiments, and supports the conclusion that replicative increase in transposable element copy number is opposed by selection. These conclusions are compared with those from other studies, and with the conclusions from population surveys of element frequencies.


Genetics ◽  
1983 ◽  
Vol 104 (3) ◽  
pp. 473-483
Author(s):  
Elizabeth A Montgomery ◽  
Charles H Langley

ABSTRACT Twenty X chromosomes isolated from a natural population of Drosophila melanogaster were surveyed using in situ hybridization to determine the number and cytogenetic location of three families of transposable elements: copia, 412 and 297. We found no sites of insertions in high frequency; in fact, frequencies of specific sites for all three elements were so low that each insertion could be interpreted as being unique. This suggests that rates of transposition and deletion for these elements are very high. Our data also show a higher than expected rate of the co-occurrence of different elements at the same site on the same chromosome.


Genetics ◽  
1972 ◽  
Vol 72 (4) ◽  
pp. 615-638 ◽  
Author(s):  
M P Shannon ◽  
T C Kaufman ◽  
M W Shen ◽  
B H Judd

ABSTRACT Aspects of the developmental genetics of lethal and semi-lethal mutants representing 13 complementation groups (cistrons) in the 3A-3C region of the X chromosome of Drosophila melanogaster are given. Each of these cistrons is associated with a particular chromomere in the salivary gland chromosome. Mutants within each cistron have similar lethality patterns and morphological attributes, and the characteristics of a given cistron are distinct with respect to other cistrons. These results provide additional evidence that only one function is associated with each chromomere.—The results of the lethality pattern analysis are also compared with previous studies of lethal mutants of Drosophila.


Sign in / Sign up

Export Citation Format

Share Document