scholarly journals Mutations in the midway Gene Disrupt a Drosophila Acyl Coenzyme A: Diacylglycerol Acyltransferase

Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1511-1518
Author(s):  
Michael Buszczak ◽  
Xiaohui Lu ◽  
William A Segraves ◽  
Ta Yuan Chang ◽  
Lynn Cooley

Abstract During Drosophila oogenesis, defective or unwanted egg chambers are eliminated during mid-oogenesis by programmed cell death. In addition, final cytoplasm transport from nurse cells to the oocyte depends upon apoptosis of the nurse cells. To study the regulation of germline apoptosis, we analyzed the midway mutant, in which egg chambers undergo premature nurse cell death and degeneration. The midway gene encodes a protein similar to mammalian acyl coenzyme A: diacylglycerol acyltransferase (DGAT), which converts diacylglycerol (DAG) into triacylglycerol (TAG). midway mutant egg chambers contain severely reduced levels of neutral lipids in the germline. Expression of midway in insect cells results in high levels of DGAT activity in vitro. These results show that midway encodes a functional DGAT and that changes in acylglycerol lipid metabolism disrupt normal egg chamber development in Drosophila.

1989 ◽  
Vol 9 (1) ◽  
pp. 83-91
Author(s):  
S Miyazawa ◽  
T Osumi ◽  
T Hashimoto ◽  
K Ohno ◽  
S Miura ◽  
...  

To identify the topogenic signal of peroxisomal acyl-coenzyme A oxidase (AOX) of rat liver, we carried out in vitro import experiments with mutant polypeptides of the enzyme. Full-length AOX and polypeptides that were truncated at the N-terminal region were efficiently imported into peroxisomes, as determined by resistance to externally added proteinase K. Polypeptides carrying internal deletions in the C-terminal region exhibited much lower import activities. Polypeptides that were truncated or mutated at the extreme C terminus were totally import negative. When the five amino acid residues at the extreme C terminus were attached to some of the import-negative polypeptides, the import activities were rescued. Moreover, the C-terminal 199 and 70 amino acid residues of AOX directed fusion proteins with two bacterial enzymes to peroxisomes. These results are interpreted to mean that the peroxisome targeting signal of AOX residues at the C terminus and the five or fewer residues at the extreme terminus have an obligatory function in targeting. The C-terminal internal region also has an important role for efficient import, possibly through a conformational effect.


Author(s):  
Omar Santín ◽  
Serena Galié ◽  
Gabriel Moncalián

Abstract Some bacteria belonging to the actinobacteria and proteobacteria groups can accumulate neutral lipids expressing enzymes of the wax ester synthase/acyl coenzyme A: diacylglycerol acyltransferase (WS/DGAT) family. tDGAT is a WS/DGAT-like enzyme from Thermomonospora curvata able to produce TAGs and WEs when heterologously expressed in Escherichia coli. In this study, a protocol for the directed evolution of bacterial lipid-producing enzymes based on fluorimetry is developed and tested. tDGAT has been successfully evolved towards the improvement of TAG production with an up to 2.5 times increase in TAG accumulation. Mutants with no ability to produce TAGs but able to accumulate waxes were also selected during the screening. The localization of the mutations that enhance TAG production in the outer surface of tDGAT points out possible new mechanisms that contribute to the activity of this family of enzymes. This Nile red-based high throughput screening provides an evolution platform for other WS/DGAT-like enzymes.


2007 ◽  
Vol 190 (4) ◽  
pp. 1247-1255 ◽  
Author(s):  
James P. Coleman ◽  
L. Lynn Hudson ◽  
Susan L. McKnight ◽  
John M. Farrow ◽  
M. Worth Calfee ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen which relies on several intercellular signaling systems for optimum population density-dependent regulation of virulence genes. The Pseudomonas quinolone signal (PQS) is a 3-hydroxy-4-quinolone with a 2-alkyl substitution which is synthesized by the condensation of anthranilic acid with a 3-keto-fatty acid. The pqsABCDE operon has been identified as being necessary for PQS production, and the pqsA gene encodes a predicted protein with homology to acyl coenzyme A (acyl-CoA) ligases. In order to elucidate the first step of the 4-quinolone synthesis pathway in P. aeruginosa, we have characterized the function of the pqsA gene product. Extracts prepared from Escherichia coli expressing PqsA were shown to catalyze the formation of anthraniloyl-CoA from anthranilate, ATP, and CoA. The PqsA protein was purified as a recombinant His-tagged polypeptide, and this protein was shown to have anthranilate-CoA ligase activity. The enzyme was active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. Inhibition of PQS formation in vivo was observed for the chloro- and fluoroanthranilate derivatives, as well as for several analogs which were not PqsA enzymatic substrates. These results indicate that the PqsA protein is responsible for priming anthranilate for entry into the PQS biosynthetic pathway and that this enzyme may serve as a useful in vitro indicator for potential agents to disrupt quinolone signaling in P. aeruginosa.


1982 ◽  
Vol 83 (4) ◽  
pp. 873-880 ◽  
Author(s):  
F. Jeffrey Field ◽  
Allen D. Cooper ◽  
Sandra K. Erickson

2013 ◽  
Vol 209 (8) ◽  
pp. 1279-1287 ◽  
Author(s):  
F. Guo ◽  
H. Zhang ◽  
J. M. Fritzler ◽  
S. D. Rider ◽  
L. Xiang ◽  
...  

2010 ◽  
Vol 18 (7) ◽  
pp. 2785-2795 ◽  
Author(s):  
Yoshihisa Nakada ◽  
Thomas D. Aicher ◽  
Yvan Le Huerou ◽  
Timothy Turner ◽  
Scott A. Pratt ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C429-C429
Author(s):  
Matthias Ehebauer ◽  
Madhan Anandhakrishnan ◽  
Michael Zimmermann ◽  
Elke Noens ◽  
Arjen Jakobi ◽  
...  

Mycobacteria have an unusual redundancy of six putative carboxyltransferase genes that form high-molecular weight holo acyl coenzyme A carboxylase complexes with a complementary set of three biotin carboxylase genes. Most of these enzyme complexes use small fatty acid coenzyme A esters as substrate, to allow their extension by one methylene group via a carboxybiotin-mediated α-carboxylation reaction. Redundant occurrence of these complexes was assumed to be related to highly complex enzymatic requirements in lipid biosynthesis, as the mycobacterial thick cell wall comprises unusual very long chain fatty acids, including mycolic acid. We have solved two high-resolution crystal structures of the 350 kDa hexameric assemblies of two different acyl coenzyme A carboxylase hexameric assemblies, AccD5 and AccD6 [1; Anandhakrishnan et al., unpublished], and characterized these enzyme complexes functionally. In a second step we investigated the acyl coenzyme A carboxylase complex AccD1-AccA1 from Mycobacteria tuberculosis with hitherto unknown function. By using a metabolomics approach we found that AccD1-AccA1 is involved in branched amino acid catabolism, which was not investigated in mycobacteria before [Ehebauer et al, unpublished. Using an in vitro assay, we show that the enzyme complex uses methylcrotonyl coenzyme A as substrate]. We determined the overall architecture of the 700 kDa AccD1-AccA1 complex to be formed from three layers of a central AccD1 hexameric ring, flanked by two distal tiers composed of three AccA1 subunits each. Our electron microscopy data match the overall dimensions of a methylcrotonyl coenzyme A holo complex with known structure and thus support our functional findings. Our data suggest a unique functional role of the AccD1-AccA1 complex within the Mycobacterium tuberculosis acyl coenzyme A carboxylase interactome. Ultimately, it is our goal to solve this and related structures of ACCase holo complexes by high-resolution crystallography as well. The abstract is dedicated to Louis Delbaere with whom I shared time during my PhD at the University of Basel, Switzerland.


2019 ◽  
Vol 11 (510) ◽  
pp. eaas9917 ◽  
Author(s):  
Joost Schalkwijk ◽  
Erik L. Allman ◽  
Patrick A. M. Jansen ◽  
Laura E. de Vries ◽  
Julie M. J. Verhoef ◽  
...  

Malaria eradication is critically dependent on new therapeutics that target resistant Plasmodium parasites and block transmission of the disease. Here, we report that pantothenamide bioisosteres were active against blood-stage Plasmodium falciparum parasites and also blocked transmission of sexual stages to the mosquito vector. These compounds were resistant to degradation by serum pantetheinases, showed favorable pharmacokinetic properties, and cleared parasites in a humanized mouse model of P. falciparum infection. Metabolomics revealed that coenzyme A biosynthetic enzymes converted pantothenamides into coenzyme A analogs that interfered with parasite acetyl–coenzyme A anabolism. Resistant parasites generated in vitro showed mutations in acetyl–coenzyme A synthetase and acyl–coenzyme A synthetase 11. Introduction and reversion of these mutations in P. falciparum using CRISPR-Cas9 gene editing confirmed the roles of these enzymes in the sensitivity of the malaria parasites to pantothenamides. These pantothenamide compounds with a new mode of action may have potential as drugs against malaria parasites.


Sign in / Sign up

Export Citation Format

Share Document