scholarly journals Pseudomonas aeruginosa PqsA Is an Anthranilate-Coenzyme A Ligase

2007 ◽  
Vol 190 (4) ◽  
pp. 1247-1255 ◽  
Author(s):  
James P. Coleman ◽  
L. Lynn Hudson ◽  
Susan L. McKnight ◽  
John M. Farrow ◽  
M. Worth Calfee ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen which relies on several intercellular signaling systems for optimum population density-dependent regulation of virulence genes. The Pseudomonas quinolone signal (PQS) is a 3-hydroxy-4-quinolone with a 2-alkyl substitution which is synthesized by the condensation of anthranilic acid with a 3-keto-fatty acid. The pqsABCDE operon has been identified as being necessary for PQS production, and the pqsA gene encodes a predicted protein with homology to acyl coenzyme A (acyl-CoA) ligases. In order to elucidate the first step of the 4-quinolone synthesis pathway in P. aeruginosa, we have characterized the function of the pqsA gene product. Extracts prepared from Escherichia coli expressing PqsA were shown to catalyze the formation of anthraniloyl-CoA from anthranilate, ATP, and CoA. The PqsA protein was purified as a recombinant His-tagged polypeptide, and this protein was shown to have anthranilate-CoA ligase activity. The enzyme was active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. Inhibition of PQS formation in vivo was observed for the chloro- and fluoroanthranilate derivatives, as well as for several analogs which were not PqsA enzymatic substrates. These results indicate that the PqsA protein is responsible for priming anthranilate for entry into the PQS biosynthetic pathway and that this enzyme may serve as a useful in vitro indicator for potential agents to disrupt quinolone signaling in P. aeruginosa.

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 401
Author(s):  
Pauline Nogaret ◽  
Fatima El El Garah ◽  
Anne-Béatrice Blanc-Potard

The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.


2005 ◽  
Vol 187 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Lauren M. Mashburn ◽  
Amy M. Jett ◽  
Darrin R. Akins ◽  
Marvin Whiteley

ABSTRACT Pseudomonas aeruginosa is a gram-negative opportunistic human pathogen often infecting the lungs of individuals with the heritable disease cystic fibrosis and the peritoneum of individuals undergoing continuous ambulatory peritoneal dialysis. Often these infections are not caused by colonization with P. aeruginosa alone but instead by a consortium of pathogenic bacteria. Little is known about growth and persistence of P. aeruginosa in vivo, and less is known about the impact of coinfecting bacteria on P. aeruginosa pathogenesis and physiology. In this study, a rat dialysis membrane peritoneal model was used to evaluate the in vivo transcriptome of P. aeruginosa in monoculture and in coculture with Staphylococcus aureus. Monoculture results indicate that approximately 5% of all P. aeruginosa genes are differentially regulated during growth in vivo compared to in vitro controls. Included in this analysis are genes important for iron acquisition and growth in low-oxygen environments. The presence of S. aureus caused decreased transcription of P. aeruginosa iron-regulated genes during in vivo coculture, indicating that the presence of S. aureus increases usable iron for P. aeruginosa in this environment. We propose a model where P. aeruginosa lyses S. aureus and uses released iron for growth in low-iron environments.


1982 ◽  
Vol 83 (4) ◽  
pp. 873-880 ◽  
Author(s):  
F. Jeffrey Field ◽  
Allen D. Cooper ◽  
Sandra K. Erickson

2011 ◽  
Vol 77 (13) ◽  
pp. 4455-4464 ◽  
Author(s):  
M. H. Wilbrink ◽  
M. Petrusma ◽  
L. Dijkhuizen ◽  
R. van der Geize

ABSTRACTThe actinobacterial cholesterol catabolic gene cluster contains a subset of genes that encode β-oxidation enzymes with a putative role in sterol side chain degradation. We investigated the physiological roles of several genes, i.e.,fadD17,fadD19,fadE26,fadE27, andro04690DSM43269, by gene inactivation studies in mutant strain RG32 ofRhodococcus rhodochrousDSM43269. Mutant strain RG32 is devoid of 3-ketosteroid 9α-hydroxylase (KSH) activity and was constructed following the identification, cloning, and sequential inactivation of fivekshAgene homologs in strain DSM43269. We show that mutant strain RG32 is fully blocked in steroid ring degradation but capable of selective sterol side chain degradation. Except for RG32ΔfadD19, none of the mutants constructed in RG32 revealed an aberrant phenotype on sterol side chain degradation compared to parent strain RG32. Deletion offadD19in strain RG32 completely blocked side chain degradation of C-24 branched sterols but interestingly not that of cholesterol. The additional inactivation offadD17in mutant RG32ΔfadD19also did not affect cholesterol side chain degradation. Heterologously expressed FadD19DSM43269nevertheless was active toward steroid-C26-oic acid substrates. Our data identified FadD19 as a steroid-coenzyme A (CoA) ligase with an essentialin vivorole in the degradation of the side chains of C-24 branched-chain sterols. This paper reports the identification and characterization of a CoA ligase with anin vivorole in sterol side chain degradation. The high similarity (67%) between the FadD19DSM43269and FadD19H37Rvenzymes further suggests that FadD19H37Rvhas anin vivorole in sterol metabolism ofMycobacterium tuberculosisH37Rv.


2013 ◽  
Vol 209 (8) ◽  
pp. 1279-1287 ◽  
Author(s):  
F. Guo ◽  
H. Zhang ◽  
J. M. Fritzler ◽  
S. D. Rider ◽  
L. Xiang ◽  
...  

Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 373-383 ◽  
Author(s):  
Thomas Bjarnsholt ◽  
Peter Østrup Jensen ◽  
Mette Burmølle ◽  
Morten Hentzer ◽  
Janus A. J. Haagensen ◽  
...  

The opportunistic human pathogen Pseudomonas aeruginosa is the predominant micro-organism of chronic lung infections in cystic fibrosis (CF) patients. P. aeruginosa colonizes the CF lungs by forming biofilm structures in the alveoli. In the biofilm mode of growth the bacteria are highly tolerant to otherwise lethal doses of antibiotics and are protected from bactericidal activity of polymorphonuclear leukocytes (PMNs). P. aeruginosa controls the expression of many of its virulence factors by means of a cell–cell communication system termed quorum sensing (QS). In the present report it is demonstrated that biofilm bacteria in which QS is blocked either by mutation or by administration of QS inhibitory drugs are sensitive to treatment with tobramycin and H2O2, and are readily phagocytosed by PMNs, in contrast to bacteria with functional QS systems. In contrast to the wild-type, QS-deficient biofilms led to an immediate respiratory-burst activation of the PMNs in vitro. In vivo QS-deficient mutants provoked a higher degree of inflammation. It is suggested that quorum signals and QS-inhibitory drugs play direct and opposite roles in this process. Consequently, the faster and highly efficient clearance of QS-deficient bacteria in vivo is probably a two-sided phenomenon: down regulation of virulence and activation of the innate immune system. These data also suggest that a combination of the action of PMNs and QS inhibitors along with conventional antibiotics would eliminate the biofilm-forming bacteria before a chronic infection is established.


2016 ◽  
Vol 85 (1) ◽  
Author(s):  
Patrick R. Secor ◽  
Lia A. Michaels ◽  
Kate S. Smigiel ◽  
Maryam G. Rohani ◽  
Laura K. Jennings ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an important opportunistic human pathogen that lives in biofilm-like cell aggregates at sites of chronic infection, such as those that occur in the lungs of patients with cystic fibrosis and nonhealing ulcers. During growth in a biofilm, P. aeruginosa dramatically increases the production of filamentous Pf bacteriophage (Pf phage). Previous work indicated that when in vivo Pf phage production was inhibited, P. aeruginosa was less virulent. However, it is not clear how the production of abundant quantities of Pf phage similar to those produced by biofilms under in vitro conditions affects pathogenesis. Here, using a murine pneumonia model, we show that the production of biofilm-relevant amounts of Pf phage prevents the dissemination of P. aeruginosa from the lung. Furthermore, filamentous phage promoted bacterial adhesion to mucin and inhibited bacterial invasion of airway epithelial cultures, suggesting that Pf phage traps P. aeruginosa within the lung. The in vivo production of Pf phage was also associated with reduced lung injury, reduced neutrophil recruitment, and lower cytokine levels. Additionally, when producing Pf phage, P. aeruginosa was less prone to phagocytosis by macrophages than bacteria not producing Pf phage. Collectively, these data suggest that filamentous Pf phage alters the progression of the inflammatory response and promotes phenotypes typically associated with chronic infection.


2005 ◽  
Vol 18 (11) ◽  
pp. 1729-1736 ◽  
Author(s):  
Jørgen Olsen ◽  
Chunze Li ◽  
Inga Bjørnsdottir ◽  
Ulrik Sidenius ◽  
Steen Honoré Hansen ◽  
...  

Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 167
Author(s):  
Sun ◽  
Li ◽  
Naqvi ◽  
Naqvi ◽  
Chu ◽  
...  

: Succinate Coenzyme A ligase beta-like protein (SUCLA-β) is a subunit of Succinyl-coenzyme A synthetase, which is involved in substrate synergism, unusual kinetic reaction in which the presence of SUCLA-β for one partial reaction stimulates another partial reaction. Trichinella spiralis is a parasitic nematode, which may hinder the development of autoimmune diseases. Immunomodulatory effects of SUCLA-β from Trichinella spiralis in the parasite-host interaction are unidentified. In this study the gene encoding T. spiralis SUCLA-β was cloned and expressed. Binding activities of recombinant T. spiralis SUCLA-β (rTs-SUCLA-β) to rat peripheral blood mononuclear cells (PBMCs) were checked by immunofluorescence assay (IFA) and the immuno-regulatory effects of rTs-SUCLA-β on cell migration, cell proliferation, nitric oxide (NO) production and apoptosis were observed by co-incubation of rTs-SUCLA-β with rat PBMCs in vitro, while cytokine secretions in rTs-SUCLA-β treated rats were evaluated in vivo. Furthermore, phagocytosis of monocytes was detected by flow cytometry and effects of rTs-SUCLA-β-induced protective immunity on T. spiralis adult worms and muscle larva were evaluated in rats. The IFA results revealed that rTs-SUCLA-β could bind to rat PBMCs. Treatment of PBMCs with rTs-SUCLA-β significantly decreased the monocyte phagocytosis, cell migration and cell proliferation, while NO production and apoptosis of PBMCs were unaffected. Results of the in vivo study showed that the IL-17 secretion decreased significantly after rTs-SUCLA-β administration in rats, while no significant effects were observed on the secretions of IFN-γ, IL-9, TGF-β and IL-4. Moreover, significant reduction of T. spiralis muscle larvae burden and significant increase in anti-rTs-SUCLA-β immunoglobulin level of IgG, IgG1 and IgG2a was observed in rTs-SUCLA-β-administered rats. The results indicated that rTs-SUCLA-β may be a potential target for controlling T. spiralis infection by suppressing the immune functions of the rat PBMCs and by reducing the parasite burden. Additionally it may also contribute to the treatment of autoimmune diseases and graft rejection by suppressing IL-17 immune response in the host.


2017 ◽  
Vol 22 (7) ◽  
pp. 897-905
Author(s):  
Lorenzo Turcano ◽  
Daniela Visaggio ◽  
Emanuela Frangipani ◽  
Antonino Missineo ◽  
Matteo Andreini ◽  
...  

Pseudomonas infections are common among hospitalized, immunocompromised, and chronic lung disease patients. These infections are recalcitrant to common antibacterial therapies due to inherent antibiotic resistance. To meet the need of new anti- Pseudomonas drugs, a sensitive, homogenous, and robust assay was developed with the aim of identifying inhibitors of acyl–coenzyme A synthetases (ACSs) from Pseudomonas. Given the importance of fatty acids for in vivo nutrition of Pseudomonas, such inhibitors might have the potential to reduce the bacterial fitness during infection. The assay, based on a coupled reaction between the Pseudomonas spp. ACS and the firefly luciferase, allowed the identification of three classes of inhibitors by screening of a diverse compound collection. These compounds were confirmed to reversibly bind ACS with potencies in the micromolar range. Two classes were found to compete with acyl–coenzyme A, while the third one was competitive with fatty acid binding. Although these compounds inhibit the bacterial ACS in cell-free assays, they show modest or no effect on Pseudomonas growth in vitro.


Sign in / Sign up

Export Citation Format

Share Document