scholarly journals Germline Cell Death Is Inhibited byP-Element Insertions Disrupting thedcp-1/pitaNested Gene Pair in Drosophila

Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1881-1888 ◽  
Author(s):  
Bonni Laundrie ◽  
Jeanne S Peterson ◽  
Jason S Baum ◽  
Jeffrey C Chang ◽  
Dana Fileppo ◽  
...  

AbstractGermline cell death in Drosophila oogenesis is controlled by distinct signals. The death of nurse cells in late oogenesis is developmentally regulated, whereas the death of egg chambers during mid-oogenesis is induced by environmental stress or developmental abnormalities. P-element insertions in the caspase gene dcp-1 disrupt both dcp-1 and the outlying gene, pita, leading to lethality and defective nurse cell death in late oogenesis. By isolating single mutations in the two genes, we have found that the loss of both genes contributes to this ovary phenotype. Mutants of pita, which encodes a C2H2 zinc-finger protein, are homozygous lethal and show dumpless egg chambers and premature nurse cell death in germline clones. Early nurse cell death is not observed in the dcp-1/pita double mutants, suggesting that dcp-1+ activity is required for the mid-oogenesis cell death seen in pita mutants. dcp-1 mutants are viable and nurse cell death in late oogenesis occurs normally. However, starvation-induced germline cell death during mid-oogenesis is blocked, leading to a reduction and inappropriate nuclear localization of the active caspase Drice. These findings suggest that the combinatorial loss of pita and dcp-1 leads to the increased survival of abnormal egg chambers in mutants bearing the P-element alleles and that dcp-1 is essential for cell death during mid-oogenesis.

2010 ◽  
Vol 190 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Ioannis P. Nezis ◽  
Bhupendra V. Shravage ◽  
Antonia P. Sagona ◽  
Trond Lamark ◽  
Geir Bjørkøy ◽  
...  

Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death.


1998 ◽  
Vol 111 (2) ◽  
pp. 213-221 ◽  
Author(s):  
K. Cant ◽  
B.A. Knowles ◽  
S. Mahajan-Miklos ◽  
M. Heintzelman ◽  
L. Cooley

Actin bundle assembly in specialized structures such as microvilli on intestinal epithelia and Drosophila bristles requires two actin bundling proteins. In these systems, the distinct biochemical properties and temporal localization of actin bundling proteins suggest that these proteins are not redundant. During Drosophila oogenesis, the formation of cytoplasmic actin bundles in nurse cells requires two actin bundling proteins, fascin encoded by the singed gene and a villin-like protein encoded by the quail gene. singed and quail mutations are fully recessive and each mutation disrupts nurse cell cytoplasmic actin bundle formation. We used P-element mediated germline transformation to overexpress quail in singed mutants and test whether these proteins have redundant functions in vivo. Overexpression of quail protein in a sterile singed background restores actin bundle formation in egg chambers. The degree of rescue by quail depends on the level of quail protein overexpression, as well as residual levels of fascin function. In nurse cells that contain excess quail but no fascin, the cytoplasmic actin network initially appears wild type but then becomes disorganized in the final stages of nurse cell cytoplasm transport. The ability of quail overexpression to compensate for the absence of fascin demonstrates that fascin is partially redundant with quail in the Drosophila germline. Quail appears to function as a bundle initiator while fascin provides bundle organization.


Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 173-186
Author(s):  
Ginger E Carney ◽  
Barbara J Taylor

Abstract A newly characterized Drosophila melanogaster gene, logjam (loj), functions in female reproduction by modulating oviposition behavior. The locus encodes at least six overlapping transcripts with unique 5′ ends. P-element mutants that express very low levels of loj transcripts are unable to oviposit mature eggs. This phenotype can be rescued by the introduction of a transgene expressing the most abundant loj transcript. As for many genes that specify behavioral outputs, loj is present in the adult central nervous system (CNS). Interestingly, it is also observed in vitellogenic egg chambers, suggesting that there may be multiple functions for this gene in egg-laying behavior. loj encodes a predicted protein with homology to the EMP24/GP25 transmembrane components of cytoplasmic vesicles and likely functions in intracellular trafficking.


Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Samantha A. Russell ◽  
Kaitlin M. Laws ◽  
Greg J. Bashaw

ABSTRACT The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 247-256
Author(s):  
Thomas G. Wilson

A new allele of the suppressor of forked [su(f)] mutation in Drosophila melanogaster has been found and designated 1(1)su(f)ts76a. It is temperature-sensitive for suppression of forked (f) and has additional temperature-sensitive phenotypes of lethality, female sterility, and abnormal bristle formation at 29 °C. It closely resembles two other conditional alleles of su(f), 1(1)su(f)ts67g and 1(1)ts726. Female sterility at 29 °C is characterized by both disorganized egg chambers in the ovarioles and also chorion-deficient oocytes. Both of these abnormalities may be the result of premature follicle cell death. The observations on 1(1)su(f)ts76a are consistent with the proposal that the similar allele, 1(1)ts726, is a cell-lethal mutation specifically affecting mitotically active cells.


Fly ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. 104-111 ◽  
Author(s):  
Allison K. Timmons ◽  
Albert A. Mondragon ◽  
Tracy L. Meehan ◽  
Kimberly McCall
Keyword(s):  

2020 ◽  
Vol 107 (4) ◽  
pp. 577-586
Author(s):  
Georgia L. Denbigh ◽  
Adrian N. Dauphinee ◽  
Meredith S. Fraser ◽  
Christian R. Lacroix ◽  
Arunika H. L. A. N. Gunawardena

2020 ◽  
Vol 104 ◽  
pp. 103542 ◽  
Author(s):  
Muhammad Nadeem Abbas ◽  
Hanghua Liang ◽  
Saima Kausar ◽  
Zhen Dong ◽  
Hongjuan Cui

2011 ◽  
Vol 286 (23) ◽  
pp. 20152-20162 ◽  
Author(s):  
Alexandra S. Ling ◽  
James R. Trotter ◽  
Edward F. Hendriks

Sign in / Sign up

Export Citation Format

Share Document