Frazzled/Dcc acts independently of Netrin to promote germline survival during Drosophila oogenesis

Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Samantha A. Russell ◽  
Kaitlin M. Laws ◽  
Greg J. Bashaw

ABSTRACT The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.

1998 ◽  
Vol 187 (7) ◽  
pp. 973-984 ◽  
Author(s):  
Daniel Carrasco ◽  
Janet Cheng ◽  
Anne Lewin ◽  
Glenn Warr ◽  
Hyekyung Yang ◽  
...  

The c-rel protooncogene encodes a member of the Rel/nuclear factor (NF)-κB family of transcriptional factors. To assess the role of the transcriptional activation domain of c-Rel in vivo, we generated mice expressing a truncated c-Rel (Δc-Rel) that lacks the COOH-terminal region, but retains a functional Rel homology domain. Mice with an homozygous mutation in the c-rel region encoding the COOH terminus of c-Rel (c-relΔCT/ΔCT) display marked defects in proliferative and immune functions. c-relΔCT/ΔCT animals present histopathological alterations of hemopoietic tissues, such as an enlarged spleen due to lymphoid hyperplasia, extramedullary hematopoiesis, and bone marrow hypoplasia. In older c-relΔCT/ΔCT mice, lymphoid hyperplasia was also detected in lymph nodes, liver, lung, and stomach. These animals present a more severe phenotype than mice lacking the entire c-Rel protein. Thus, in c-relΔCT/ΔCT mice, the lack of c-Rel activity is less efficiently compensated by other NF-κB proteins.


2007 ◽  
Vol 282 (49) ◽  
pp. 35449-35456 ◽  
Author(s):  
Hiroko Morimoto ◽  
Kunio Kondoh ◽  
Satoko Nishimoto ◽  
Kazuya Terasawa ◽  
Eisuke Nishida

ERK5 plays a crucial role in many biological processes by regulating transcription. ERK5 has a large C-terminal-half that contains a transcriptional activation domain. However, it has remained unclear how its transcriptional activation activity is regulated. Here, we show that the activated kinase activity of ERK5 is required for the C-terminal-half to enhance the AP-1 activity, and that the activated ERK5 undergoes autophosphorylation on its most C-terminal region. Changing these phosphorylatable threonine and serine residues to unphosphorylatable alanines significantly reduces the transcriptional activation activity of ERK5. Moreover, phosphomimetic mutants of the C-terminal-half of ERK5 without an N-terminal kinase domain are shown to be able to enhance the AP-1 activity in fibroblastic cells. These results reveal the role of the stimulus-induced ERK5 autophosphorylation in regulation of gene expression.


1990 ◽  
Vol 10 (10) ◽  
pp. 5532-5535 ◽  
Author(s):  
C Abate ◽  
D Luk ◽  
E Gagne ◽  
R G Roeder ◽  
T Curran

The products of c-fos and c-jun (Fos and Jun) function in gene regulation by interacting with the AP-1 binding site. Here we have examined the contribution of Fos and Jun toward transcriptional activity by using Fos and Jun polypeptides purified from Escherichia coli. Fos contained a transcriptional activation domain as well as a region which exerted a negative influence on transcriptional activity in vitro. Moreover, distinct activation domains in both Fos and Jun functioned cooperatively in transcriptional stimulation. Thus, regulation of gene expression by Fos and Jun results from an integration of several functional domains in a bimolecular complex.


1997 ◽  
Vol 121 (2) ◽  
pp. 389-396 ◽  
Author(s):  
S. Kojima ◽  
A. Kobayashi ◽  
O. Gotoh ◽  
Y. Ohkuma ◽  
Y. Fujii-Kuriyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document