l(3)malignant brain tumor and Three Novel Genes Are Required for Drosophila Germ-Cell Formation

Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1889-1900 ◽  
Author(s):  
Christopher B Yohn ◽  
Leslie Pusateri ◽  
Vitor Barbosa ◽  
Ruth Lehmann

Abstract To identify genes involved in the process of germ-cell formation in Drosophila, a maternal-effect screen using the FLP/FRT-ovoD method was performed on chromosome 3R. In addition to expected mutations in the germ-cell determinant oskar and in other genes known to be involved in the process, several novel mutations caused defects in germ-cell formation. Mutations in any of three genes [l(3)malignant brain tumor, shackleton, and out of sync] affect the synchronous mitotic divisions and nuclear migration of the early embryo. The defects in nuclear migration or mitotic synchrony result in a reduction in germ-cell formation. Mutations in another gene identified in this screen, bebra, do not cause mitotic defects, but appear to act upstream of the localization of oskar. Analysis of our mutants demonstrates that two unique and independent processes must occur to form germ cells—germ-plasm formation and nuclear division/migration.

PLoS Biology ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. e3001183
Author(s):  
Tsubasa Tanaka ◽  
Naoki Tani ◽  
Akira Nakamura

TheDrosophilagerm plasm is responsible for germ cell formation. Its assembly begins with localization ofoskarmRNA to the posterior pole of the oocyte. Theoskartranslation produces 2 isoforms with distinct functions: short Oskar recruits germ plasm components, whereas long Oskar remodels actin to anchor the components to the cortex. The mechanism by which long Oskar anchors them remains elusive. Here, we report that Yolkless, which facilitates uptake of nutrient yolk proteins into the oocyte, is a key cofactor for long Oskar. Loss of Yolkless or depletion of yolk proteins disrupts the microtubule alignment andoskarmRNA localization at the posterior pole of the oocyte, whereas microtubule-dependent localization ofbicoidmRNA to the anterior andgurkenmRNA to the anterior-dorsal corner remains intact. Furthermore, these mutant oocytes do not properly respond to long Oskar, causing defects in the actin remodeling and germ plasm anchoring. Thus, the yolk uptake is not merely the process for nutrient incorporation, but also crucial foroskarmRNA localization and cortical anchorage of germ plasm components in the oocyte.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Antonia A. Dominguez ◽  
H. Rosaria Chiang ◽  
Meena Sukhwani ◽  
Kyle E. Orwig ◽  
Renee A. Reijo Pera

The Lancet ◽  
1977 ◽  
Vol 309 (8007) ◽  
pp. 362-363 ◽  
Author(s):  
P.A. Riley ◽  
P.M. Sutton

Cell Reports ◽  
2017 ◽  
Vol 18 (4) ◽  
pp. 831-839 ◽  
Author(s):  
Dorothy A. Lerit ◽  
Conrad W. Shebelut ◽  
Kristen J. Lawlor ◽  
Nasser M. Rusan ◽  
Elizabeth R. Gavis ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 211
Author(s):  
T. Teramura ◽  
N. Kawata ◽  
N. Fujinami ◽  
M. Takenoshita ◽  
N. Sagawa ◽  
...  

Embryonic stem cells (ESCs) of nonhuman primate are important tools for human gametogenesis research. Generally, ESCs, embryos, and fetuses of nonhuman primates are similar to these of human. Recently, germ cell formation of mouse ESCs in vitro has been reported. In this study, we established new cynomolgus monkey ES (cyES) lines and determined germinal competency by assessing expression of mRNA markers. CyES lines were established using blastocysts produced by intracytoplasmic sperm injection (ICSI). For inducing super-ovulation, females were treated with 25 IU/kg pregnant mare serum gonadotropin (PMSG) once a day for 9 days, followed by 400 IU/kg hCG. Oocytes were collected 40 h after injection of hCG. After sperm injection, embryos were cultured in mCMRL medium to the blastocyst stage. For ES line establishment, inner cell masses (ICMs) were isolated by immunosurgery. ESC colonies emerged at about 10 days after ICM plating; three cyES cell lines were successfully obtained (3/11; 27.3%). We characterized these lines by immunocytochemistry for Oct-3/4, SSEA-3, and SSEA-4, which are diagnostic markers for primate ESCs, and by assay for alkaline phosphatase (ALP) activity. All cell lines expressed Oct-3/4, SSEA-4 and ALP activity. The previously reported SSEA-3 weak expression in cyES cells was not observed. These lines differentiated spontaneously when they were replaced in non-adherent culture (embryoid body: EB) or injected into SCID mice subcutaneously. To assess germ cell competency in vitro, we analyzed for the presence of vasa mRNA which shows a restricted expression pattern to germ cell formation, and DMC1 and SYCP1 which show specific existence on synaptonema complex in meiosis. Detection of these germ cell markers was performed by RT-PCR with total cDNA from ESCs and EBs. Nanog mRNA was detected only in ESCs. Oct-4 was detected in gonadal tissue of both sexes, ESCs, and EBs. Vasa was expressed in testis, but not in ESCs or somatic cells. Interestingly, we recognized weak expression of Vasa in Day 12-16 EBs. DMC1 and SYCP1 as meiosis markers were not detected. Because Oct-4 and Vasa mRNA are transcribed simultaneously, similar to that in the early part of gametogenesis such as the latter period of primordial germ cell (PGC) migration, PGC formation in cynomolgus EBs could occurr as in some cases of mouse or human EBs previously reported. Although detailed properties such as the functions of these Vasa-positive cells have not been confirmed, these results demonstrate that cyES cells obtained in the current study might contribute to putative germ cells in vitro by differentiating to EBs. This study was supported by a Grant-in-Aid for the 21st Century COE Program of the Japan Mext and by a grant for the Wakayama Prefecture Collaboration of Regional Entities for the Advancement of Technology Excellence of the JST.


The Lancet ◽  
1976 ◽  
Vol 308 (7998) ◽  
pp. 1311 ◽  
Author(s):  
F HECHT

2017 ◽  
Vol 423 (2) ◽  
pp. 111-125 ◽  
Author(s):  
Keita Yoshida ◽  
Akiko Hozumi ◽  
Nicholas Treen ◽  
Tetsushi Sakuma ◽  
Takashi Yamamoto ◽  
...  

Development ◽  
2007 ◽  
Vol 134 (1) ◽  
pp. 137-146 ◽  
Author(s):  
J. Anne ◽  
R. Ollo ◽  
A. Ephrussi ◽  
B. M. Mechler

Sign in / Sign up

Export Citation Format

Share Document