scholarly journals Patterns of Inbreeding Depression and Architecture of the Load in Subdivided Populations

Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2193-2212 ◽  
Author(s):  
Sylvain Glémin ◽  
Joëlle Ronfort ◽  
Thomas Bataillon

AbstractInbreeding depression is a general phenomenon that is due mainly to recessive deleterious mutations, the so-called mutation load. It has been much studied theoretically. However, until very recently, population structure has not been taken into account, even though it can be an important factor in the evolution of populations. Population subdivision modifies the dynamics of deleterious mutations because the outcome of selection depends on processes both within populations (selection and drift) and between populations (migration). Here, we present a general model that permits us to gain insight into patterns of inbreeding depression, heterosis, and the load in subdivided populations. We show that they can be interpreted with reference to single-population theory, using an appropriate local effective population size that integrates the effects of drift, selection, and migration. We term this the “effective population size of selection” (NeS). For the infinite island model, for example, it is equal to NeS=N(1+m∕hs), where N is the local population size, m the migration rate, and h and s the dominance and selection coefficients of deleterious mutation. Our results have implications for the estimation and interpretation of inbreeding depression in subdivided populations, especially regarding conservation issues. We also discuss the possible effects of migration and subdivision on the evolution of mating systems.

Genetics ◽  
1994 ◽  
Vol 136 (2) ◽  
pp. 685-692 ◽  
Author(s):  
Y X Fu

Abstract A new estimator of the essential parameter theta = 4Ne mu from DNA polymorphism data is developed under the neutral Wright-Fisher model without recombination and population subdivision, where Ne is the effective population size and mu is the mutation rate per locus per generation. The new estimator has a variance only slightly larger than the minimum variance of all possible unbiased estimators of the parameter and is substantially smaller than that of any existing estimator. The high efficiency of the new estimator is achieved by making full use of phylogenetic information in a sample of DNA sequences from a population. An example of estimating theta by the new method is presented using the mitochondrial sequences from an American Indian population.


Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 429-446 ◽  
Author(s):  
Jinliang Wang ◽  
Michael C Whitlock

Abstract In the past, moment and likelihood methods have been developed to estimate the effective population size (Ne) on the basis of the observed changes of marker allele frequencies over time, and these have been applied to a large variety of species and populations. Such methods invariably make the critical assumption of a single isolated population receiving no immigrants over the study interval. For most populations in the real world, however, migration is not negligible and can substantially bias estimates of Ne if it is not accounted for. Here we extend previous moment and maximum-likelihood methods to allow the joint estimation of Ne and migration rate (m) using genetic samples over space and time. It is shown that, compared to genetic drift acting alone, migration results in changes in allele frequency that are greater in the short term and smaller in the long term, leading to under- and overestimation of Ne, respectively, if it is ignored. Extensive simulations are run to evaluate the newly developed moment and likelihood methods, which yield generally satisfactory estimates of both Ne and m for populations with widely different effective sizes and migration rates and patterns, given a reasonably large sample size and number of markers.


2005 ◽  
Vol 86 (1) ◽  
pp. 41-51 ◽  
Author(s):  
SYLVAIN GLÉMIN

The fate of lethal alleles in populations is of interest in evolutionary and conservation biology for several reasons. For instance, lethals may contribute substantially to inbreeding depression. The frequency of lethal alleles depends on population size, but it is not clear how it is affected by population structure. By analysing the case of the infinite island model by numerical approaches and analytical approximations it is shown that, like population size, population structure affects the fate of lethal alleles if dominance levels are low. Inbreeding depression caused by such alleles is also affected by the population structure, whereas the mutation load is only weakly affected. Heterosis also depends on population structure, but it always remains low, of the order of the mutation rate or less. These patterns are compared with those caused by mildly deleterious mutations to give a general picture of the effect of population structure on inbreeding depression, heterosis, and the mutation load.


2017 ◽  
Author(s):  
José F Domínguez-Contreras ◽  
Adrian Munguia-Vega ◽  
Bertha P Ceballos-Vázquez ◽  
Marcial Arellano-Martínez ◽  
Francisco J García-Rodríguez ◽  
...  

The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species with varying life histories targeted by artisanal fisheries in the region, lack of information about the distribution of each species and metapopulation size and structure could impede effective fisheries management to avoid overexploitation. Here we tested if different life histories in three species of octopus help to predict observed patterns of genetic diversity, population dynamics, structure and connectivity that could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the Pacific coast of the Baja California peninsula. We tested four a priori hypothesis derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We found that the species with low fecundity and without a planktonic larval stage (Octopus bimaculoides) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, suggesting limited dispersal and high local recruitment. In contrast, two species with higher fecundity and planktonic larvae (O. bimaculatus, O. hubbsorum) showed higher effective population size and genetic diversity, and overall lower kinship and population structure, supporting higher levels of gene flow over a larger geographical scale. Even among the latter, there were differences in the calculated parameters possibly associated with increased connectivity in the species with the longest planktonic larval duration (O. bimaculatus). We consider that O. bimaculoides could be more susceptible to over exploitation of small, isolated populations that could have longer recovery times, and suggest that management should take place within each local population. For the two species with pelagic larvae, management should consider metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal between localities driven by ocean currents. The distribution of each species and variations in their reproductive timing should also be considered when establishing marine reserves or seasonal fishing closures.


Author(s):  
Bruce Walsh ◽  
Michael Lynch

The effects of genetic drift usually assume an idealized population of constant size. This chapter shows how the population size for such an idealized population can be replaced with an effective population size for populations with age structure, unequal sex ratios, a history of expansion or contraction, inbreeding, and population subdivision. These demographic features impact the entire genome more or less equally. A relatively recent understanding is that selection at a site can dramatically reduce the local effective population size experienced by nearby linked sites (the Hill-Robertson effect). This can arise from background selection to remove deleterious new mutations or from selective sweeps wherein favorable new mutations are driven toward fixation. The Hill-Robertson effect is a general way to describe the fact that selection at a site makes selection are other linked sites less efficient, and, therefore, more neutral. This chapter discusses the implications of this finding for genome structure.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 501-519 ◽  
Author(s):  
Valérie Laporte ◽  
Brian Charlesworth

AbstractA fast-timescale approximation is applied to the coalescent process in a single population, which is demographically structured by sex and/or age. This provides a general expression for the probability that a pair of alleles sampled from the population coalesce in the previous time interval. The effective population size is defined as the reciprocal of twice the product of generation time and the coalescence probability. Biologically explicit formulas for effective population size with discrete generations and separate sexes are derived for a variety of different modes of inheritance. The method is also applied to a nuclear gene in a population of partially self-fertilizing hermaphrodites. The effects of population subdivision on a demographically structured population are analyzed, using a matrix of net rates of movement of genes between different local populations. This involves weighting the migration probabilities of individuals of a given age/sex class by the contribution of this class to the leading left eigenvector of the matrix describing the movements of genes between age/sex classes. The effects of sex-specific migration and nonrandom distributions of offspring number on levels of genetic variability and among-population differentiation are described for different modes of inheritance in an island model. Data on DNA sequence variability in human and plant populations are discussed in the light of the results.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Eloïse Duval ◽  
Øystein Skaala ◽  
María Quintela ◽  
Geir Dahle ◽  
Aurélien Delaval ◽  
...  

Abstract Background In species showing partial migration, as is the case for many salmonid fishes, it is important to assess how anthropogenic pressure experienced by migrating individuals affects the total population. We focused on brown trout (Salmo trutta) from the Guddal River in the Norwegian Hardanger Fjord system, which encompasses both resident and anadromous individuals. Aquaculture has led to increased anthropogenic pressure on brown trout during the marine phase in this region. Fish traps in the Guddal River allow for sampling all ascending anadromous spawners and descending smolts. We analyzed microsatellite DNA markers from all individuals ascending in 2006–2016, along with all emigrating smolts in 2017. We investigated (1) if there was evidence for declines in census numbers and effective population size during that period, (2) if there was association between kinship and migration timing in smolts and anadromous adults, and (3) to what extent resident trout were parents of outmigrating smolts. Results Census counts of anadromous spawners showed no evidence for a decline from 2006 to 2016, but were lower than in 2000–2005. Estimates of effective population size also showed no trends of declines during the study period. Sibship reconstruction of the 2017 smolt run showed significant association between kinship and migration timing, and a similar association was indicated in anadromous spawners. Parentage assignment of 2017 smolts with ascending anadromous trout as candidate parents, and assuming that unknown parents represented resident trout, showed that 70% of smolts had at least one resident parent and 24% had two resident parents. Conclusions The results bear evidence of a population that after an initial decline has stabilized at a lower number of anadromous spawners. The significant association between kinship and migration timing in smolts suggests that specific episodes of elevated mortality in the sea could disproportionally affect some families and reduce overall effective population size. Finally, the results based on parentage assignment demonstrate a strong buffering effect of resident trout in case of elevated marine mortality affecting anadromous trout, but also highlight that increased mortality of anadromous trout, most of which are females, may lower overall production in the system.


Sign in / Sign up

Export Citation Format

Share Document