QUANTITATIVE GENETIC ANALYSIS OF CHARACTERS IN WHEAT USING CROSSES OF CHROMOSOME SUBSTITUTION LINES (THEORETICAL CONSIDERATIONS)

Genetics ◽  
1967 ◽  
Vol 57 (2) ◽  
pp. 195-211
Author(s):  
Rustem Aksel
2008 ◽  
Vol 127 (6) ◽  
pp. 612-618 ◽  
Author(s):  
S. Saha ◽  
J. N. Jenkins ◽  
J. Wu ◽  
J. C. McCarty ◽  
D. M. Stelly

1974 ◽  
Vol 16 (2) ◽  
pp. 449-456 ◽  
Author(s):  
G. M. Halloran

Genetic analyses were conducted of culm length, ear density, spikelet number and fertility in wheat using the two cultivars Chinese Spring and Hope and the 21 chromosome substitution lines of Hope in Chinese Spring.Elimination of differential vernalization and photoperiodic responses of the substitution lines revealed comparatively simple genetic control of these characters. Minimal estimates of the number of genes determining character expression are three for culm length, four for ear density, six for spikelet number and five for fertility. Major and minor influences of these genes have been arbitrarily determined.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 833-841 ◽  
Author(s):  
Douglas R Taylor ◽  
Matthew S Olson ◽  
David E McCauley

Abstract Gynodioecy, the coexistence of functionally female and hermaphroditic morphs within plant populations, often has a complicated genetic basis involving several cytoplasmic male-sterility factors and nuclear restorers. This complexity has made it difficult to study the genetics and evolution of gynodioecy in natural populations. We use a quantitative genetic analysis of crosses within and among populations of Silene vulgaris to partition genetic variance for sex expression into nuclear and cytoplasmic components. We also use mitochondrial markers to determine whether cytoplasmic effects on sex expression can be traced to mitochondrial variance. Cytoplasmic variation and epistatic interactions between nuclear and cytoplasmic loci accounted for a significant portion of the variation in sex expression among the crosses. Source population also accounted for a significant portion of the sex ratio variation. Crosses among populations greatly enhanced the dam (cytoplasmic) effect, indicating that most among-population variance was at cytoplasmic loci. This is supported by the large among-population variance in the frequency of mitochondrial haplotypes, which also accounted for a significant portion of the sex ratio variance in our data. We discuss the similarities between the population structure we observed at loci that influence sex expression and previous work on putatively neutral loci, as well as the implications this has for what mechanisms may create and maintain population structure at loci that are influenced by natural selection.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1158
Author(s):  
Nacer Bellaloui ◽  
Sukumar Saha ◽  
Jennifer L. Tonos ◽  
Jodi A. Scheffler ◽  
Johnie N. Jenkins ◽  
...  

Nutrients, including macronutrients such as Ca, P, K, and Mg, are essential for crop production and seed quality, and for human and animal nutrition and health. Macronutrient deficiencies in soil lead to poor crop nutritional qualities and a low level of macronutrients in cottonseed meal-based products, leading to malnutrition. Therefore, the discovery of novel germplasm with a high level of macronutrients or significant variability in the macronutrient content of crop seeds is critical. To our knowledge, there is no information available on the effects of chromosome or chromosome arm substitution on cottonseed macronutrient content. The objective of this study was to evaluate the effects of chromosome or chromosome arm substitution on the variability and content of the cottonseed macronutrients Ca, K, Mg, N, P, and S in chromosome substitution lines (CS). Nine chromosome substitution lines were grown in two-field experiments at two locations in 2013 in South Carolina, USA, and in 2014 in Mississippi, USA. The controls used were TM-1, the recurrent parent of the CS line, and the cultivar AM UA48. The results showed major variability in macronutrients among CS lines and between CS lines and controls. For example, in South Carolina, the mean values showed that five CS lines (CS-T02, CS-T04, CS-T08sh, CS-B02, and CS-B04) had higher Ca level in seed than controls. Ca levels in these CS lines varied from 1.88 to 2.63 g kg−1 compared with 1.81 and 1.72 g kg−1 for TM-1 and AMUA48, respectively, with CS-T04 having the highest Ca concentration. CS-M08sh exhibited the highest K concentration (14.50 g kg−1), an increase of 29% and 49% over TM-1 and AM UA48, respectively. Other CS lines had higher Mg, P, and S than the controls. A similar trend was found at the MS location. This research demonstrated that chromosome substitution resulted in higher seed macronutrients in some CS lines, and these CS lines with a higher content of macronutrients can be used as a genetic tool towards the identification of desired seed nutrition traits. Also, the CS lines with higher desired macronutrients can be used as parents to breed for improved nutritional quality in Upland cotton, Gossypium hirsutum L., through improvement by the interspecific introgression of desired seed nutrient traits such as Ca, K, P, S, and N. The positive and significant (p ≤ 0.0001) correlation of P with Ca, P with Mg, S with P, and S with N will aid in understanding the relationships between nutrients to improve the fertilizer management program and maintain higher cottonseed nutrient content.


2004 ◽  
Vol 12 (10) ◽  
pp. 1652-1657 ◽  
Author(s):  
M. Elizabeth Tejero ◽  
J. Michael Proffitt ◽  
Shelley A. Cole ◽  
Jeanne H. Freeland-Graves ◽  
Guowen Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document