Compensation for the absence of the catalytically active half of DNA polymerase ε in yeast by positively selected mutations in CDC28

Genetics ◽  
2021 ◽  
Author(s):  
Elena I Stepchenkova ◽  
Anna S Zhuk ◽  
Jian Cui ◽  
Elena R Tarakhovskaya ◽  
Stephanie R Barbari ◽  
...  

Abstract Current eukaryotic replication models postulate that leading and lagging DNA strands are replicated predominantly by dedicated DNA polymerases. The catalytic subunit of the leading strand DNA polymerase ε, Pol2, consists of two halves made of two different ancestral B-family DNA polymerases. Counterintuitively, the catalytically active N-terminal half is dispensable, while the inactive C-terminal part is required for viability. Despite extensive studies of yeast Saccharomyces cerevisiae strains lacking the active N-terminal half, it is still unclear how these strains survive and recover. We designed a robust method for constructing mutants with only the C-terminal part of Pol2. Strains without the active polymerase part show severe growth defects, sensitivity to replication inhibitors, chromosomal instability, and elevated spontaneous mutagenesis. Intriguingly, the slow-growing mutant strains rapidly accumulate fast-growing clones. Analysis of genomic DNA sequences of these clones revealed that the adaptation to the loss of the catalytic N-terminal part of Pol2 occurs by a positive selection of mutants with improved growth. Elevated mutation rates help generate sufficient numbers of these variants. Single nucleotide changes in the cell cycle-dependent kinase gene, CDC28, improve the growth of strains lacking the N-terminal part of Pol2, and rescue their sensitivity to replication inhibitors and, in parallel, lower mutation rates. Our study predicts that changes in mammalian homologs of cyclin-dependent kinases may contribute to cellular responses to the leading strand polymerase defects.

2020 ◽  
Author(s):  
Elena I. Stepchenkova ◽  
Anna S. Zhuk ◽  
Jian Cui ◽  
Elena R. Tarakhovskaya ◽  
Stephanie R. Barbari ◽  
...  

AbstractDNA polymerase ε (pol ε) participates in the leading DNA strand synthesis in eukaryotes. The catalytic subunit of this enzyme, Pol2, is a fusion of two ancestral B-family DNA polymerases. Paradoxically, the catalytically active N-terminal pol is dispensable, and an inactive C-terminal pol is essential for yeast cell viability. Despite extensive studies of strains without the active N-terminal half (mutation pol2-16), it is still unclear how they survive and what is the mechanism of rapid recovery of initially miserably growing cells. The reason for the slow progress is in the difficultly of obtaining strains with the defect. We designed a robust method for constructing mutants with only the C-terminal part of Pol2 using allele pol2rc-ΔN with optimized codon usage. Colonies bearing pol2rc-ΔN appear three times sooner than colonies of pol2-16 but exhibit similar growth defects: sensitivity to hydroxyurea, chromosomal instability, and an elevated level of spontaneous mutagenesis. UV-induced mutagenesis is partially affected; it is lower only at high doses in some reporters. The analysis of the genomes of pol2rc-ΔN isolates revealed the prevalence of nonsynonymous mutations suggesting that the growth recovery was a result of positive selection for better growth fueled by variants produced by the elevated mutation rate. Mutations in the CDC28 gene, the primary regulator of the cell cycle, were repeatedly found in independent clones. Genetic analysis established that cdc28 alleles single-handedly improve the growth of pol2rc-ΔN strains and suppress sensitivity hydroxyurea. The affected amino acids are located on the Cdc28 molecule’s two surfaces that mediate contacts with cyclins or kinase subunits. Our work establishes the significance of the CDC28 gene for the resilience of replication and predicts that changes in mammalian homologs of cyclin-dependent kinases may play a role in remastering replication to compensate for the defects in the leading strand synthesis by the dedicated polymerase.Author SummaryThe catalytic subunit of the leading strand DNA polymerase ε, Pol2, consists of two halves made of two different ancestral B-family DNA polymerases. Counterintuitively, the catalytically active N-terminal half is dispensable while the inactive C-terminal part is required for viability. The corresponding strains show a severe growth defect, sensitivity to replication inhibitors, chromosomal instability, and elevated spontaneous mutagenesis. Intriguingly, the slow-growing mutant strains rapidly produced fast-growing clones. We discovered that the adaptation to the loss of the catalytic N-terminal part of Pol2 occurs during evolution by positive selection for a better growth fueled by variants produced by elevated mutation rates. Mutations in the cell cycle-dependent kinase gene, CDC28, can single-handedly improve the growth of strains lacking the N-terminal part of Pol2. Our study predicts that changes in mammalian homologs of cyclin-dependent kinases may play a role in response to the defects of active leading strand polymerase.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 511-519 ◽  
Author(s):  
Robert J Kokoska ◽  
Lela Stefanovic ◽  
Andrew B Buermeyer ◽  
R Michael Liskay ◽  
Thomas D Petes

AbstractThe POL30 gene of the yeast Saccharomyces cerevisiae encodes the proliferating cell nuclear antigen (PCNA), a protein required for processive DNA synthesis by DNA polymerase δ and ϵ. We examined the effects of the pol30-52 mutation on the stability of microsatellite (1- to 8-bp repeat units) and minisatellite (20-bp repeat units) DNA sequences. It had previously been shown that this mutation destabilizes dinucleotide repeats 150-fold and that this effect is primarily due to defects in DNA mismatch repair. From our analysis of the effects of pol30-52 on classes of repetitive DNA with longer repeat unit lengths, we conclude that this mutation may also elevate the rate of DNA polymerase slippage. The effect of pol30-52 on tracts of repetitive DNA with large repeat unit lengths was similar, but not identical, to that observed previously for pol3-t, a temperature-sensitive mutation affecting DNA polymerase δ. Strains with both pol30-52 and pol3-t mutations grew extremely slowly and had minisatellite mutation rates considerably greater than those observed in either single mutant strain.


1981 ◽  
Vol 36 (9-10) ◽  
pp. 813-819 ◽  
Author(s):  
Hans Eckstein

Abstract Dedicated to Professor Dr. Joachim Kühnau on the Occasion of His 80th Birthday cGMP, DNA Polymerase Activity, DNA Polymerase A, DNA Polymerase I, Baker's Yeast DNA polymerase activity from extracts of growing yeast cells is inhibited by cGMP. Experiments with partially purified yeast DNA polymerases show, that cGMP inhibits DNA polymerase A (DNA polymerase I from Chang), which is the main component of the soluble DNA polymerase activity in yeast extracts, by competing for the enzyme with the primer-template DNA. Since the enzyme is not only inhibited by 3',5'-cGMP, but also by 3',5'-cAMP, the 3': 5'-phosphodiester seems to be crucial for the competition between cGMP and primer. This would be inconsistent with the concept of a 3'-OH primer binding site in the enzyme. The existence of such a site in the yeast DNA polymerase A is indicated from studies with various purine nucleoside monophosphates.When various DNA polymerases are compared, inhibition by cGMP seems to be restricted to those enzymes, which are involved in DNA replication. DNA polymerases with an associated nuclease activity are not inhibited, DNA polymerase B from yeast is even activated by cGMP. Though some relations between the cGMP effect and the presumed function of the enzymes in the living cell are apparent, the biological meaning of the observations in general remains open.


2020 ◽  
Author(s):  
Penghao Xu ◽  
Francesca Storici

ABSTRACTRibonucleoside monophosphate (rNMP) incorporation in DNA is a natural and prominent phenomenon resulting in DNA structural change and genome instability. While DNA polymerases have different rNMP incorporation rates, little is known whether these enzymes incorporate rNMPs following specific sequence patterns. In this study, we analyzed a series of rNMP incorporation datasets, generated from three rNMP mapping techniques, and obtained from Saccharomyces cerevisiae cells expressing wild-type or mutant replicative DNA polymerase and ribonuclease H2 genes. We performed computational analyses of rNMP sites around early and late firing autonomously replicating sequences (ARS’s) of the yeast genome, from which bidirectional, leading and lagging DNA synthesis starts. We find the preference of rNMP incorporation on the leading strand in wild-type DNA polymerase yeast cells. The leading/lagging-strand ratio of rNMP incorporation changes dramatically within 500 nt from ARS’s, highlighting the Pol δ - Pol ε handoff during early leading-strand synthesis. Furthermore, the pattern of rNMP incorporation is markedly distinct between the leading the lagging strand. Overall, our results show the different counts and patterns of rNMP incorporation during DNA replication from ARS, which reflects the different labor of division and rNMP incorporation pattern of Pol δ and Pol ε.


2018 ◽  
Vol 29 (21) ◽  
pp. 2540-2552 ◽  
Author(s):  
Jeniffer Concepción-Acevedo ◽  
Jonathan C. Miller ◽  
Michael J. Boucher ◽  
Michele M. Klingbeil

Trypanosoma brucei has a unique catenated mitochondrial DNA (mtDNA) network called kinetoplast DNA (kDNA). Replication of kDNA occurs once per cell cycle in near synchrony with nuclear S phase and requires the coordination of many proteins. Among these are three essential DNA polymerases (TbPOLIB, IC, and ID). Localization dynamics of these proteins with respect to kDNA replication stages and how they coordinate their functions during replication are not well understood. We previously demonstrated that TbPOLID undergoes dynamic localization changes that are coupled to kDNA replication events. Here, we report the localization of TbPOLIC, a second essential DNA polymerase, and demonstrate the accumulation of TbPOLIC foci at active kDNA replication sites (antipodal sites) during stage II of the kDNA duplication cycle. While TbPOLIC was undetectable by immunofluorescence during other cell cycle stages, steady-state protein levels measured by Western blot remained constant. TbPOLIC foci colocalized with the fraction of TbPOLID that localized to the antipodal sites. However, the partial colocalization of the two essential DNA polymerases suggests a highly dynamic environment at the antipodal sites to coordinate the trafficking of replication proteins during kDNA synthesis. These data indicate that cell cycle–dependent localization is a major regulatory mechanism for essential mtDNA polymerases during kDNA replication.


1999 ◽  
Vol 46 (4) ◽  
pp. 862-872 ◽  
Author(s):  
A Hałas ◽  
A Ciesielski ◽  
J Zuk

In the yeast Saccharomyces cerevisiae three different DNA polymerases alpha, delta and epsilon are involved in DNA replication. DNA polymerase alpha is responsible for initiation of DNA synthesis and polymerases delta and epsilon are required for elongation of DNA strand during replication. DNA polymerases delta and epsilon are also involved in DNA repair. In this work we studied the role of these three DNA polymerases in the process of recombinational synthesis. Using thermo-sensitive heteroallelic mutants in genes encoding DNA polymerases we studied their role in the process of induced gene conversion. Mutant strains were treated with mutagens, incubated under permissive or restrictive conditions and the numbers of convertants obtained were compared. A very high difference in the number of convertants between restrictive and permissive conditions was observed for polymerases alpha and delta, which suggests that these two polymerases play an important role in DNA synthesis during mitotic gene conversion. Marginal dependence of gene conversion on the activity of polymerase epsilon indicates that this DNA polymerase may be involved in this process but rather as an auxiliary enzyme.


2017 ◽  
Vol 37 (21) ◽  
Author(s):  
Chuanhe Yu ◽  
Haiyun Gan ◽  
Zhiguo Zhang

ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal.


1978 ◽  
Vol 171 (1) ◽  
pp. 241-249 ◽  
Author(s):  
C A Ross ◽  
W J Harris

The properties of three DNA polymerase species A, B and C, purified from Chlamydomonas reinhardii were compared. DNA polymerases A and B have Km values with respect to deoxyribonucleoside triphosphates of 19 micron and 3 micron respectively. DNA polymerase A is most active with activated DNA, but will also use native DNA and synthetic RNA and DNA templates with DNA primers. DNA polymerase B is also most active with activated DNA, but will use denatured DNA and synthetic DNA templates. It is inactive with RNA templates. DNA polymerase B is completely inactive in the presence of 100 micron-heparin, which has no effect on DNA polymerase A activity. Heparin dissociates DNA polymerase B into subunits that are still catalytically active, but which heparin inhibited. DNA polymerase B possesses deoxyribonuclease activity that is inhibited by 5 micron-heparin, suggesting that the deoxyribonuclease is an integral part of the DNA polymerase moiety. DNA polymerase A is devoid of nuclease activity. DNA polymerase C is similar to DNA polymerase B in all these properties, though it is more active with RNA primers and has greater heat-sensitivity.


Genetics ◽  
2020 ◽  
Vol 216 (4) ◽  
pp. 827-836
Author(s):  
Linda J. Reha-Krantz ◽  
Myron F. Goodman

John W. Drake died 02-02-2020, a mathematical palindrome, which he would have enjoyed, given his love of “word play and logic,” as stated in his obituary and echoed by his family, friends, students, and colleagues. Many aspects of Jan’s career have been reviewed previously, including his early years as a Caltech graduate student, and when he was editor-in-chief, with the devoted assistance of his wife Pam, of this journal for 15 impactful years. During his editorship, he raised the profile of GENETICS as the flagship journal of the Genetics Society of America and inspired and contributed to the creation of the Perspectives column, coedited by Jim Crow and William Dove. At the same time, Jan was building from scratch the Laboratory of Molecular Genetics on the newly established Research Triangle Park campus of the National Institute of Environmental Health Science, which he headed for 30 years. This commentary offers a unique perspective on Jan’s legacy; we showcase Jan’s 1969 benchmark discovery of antimutagenic T4 DNA polymerases and the research by three generations (and counting) of scientists whose research stems from that groundbreaking discovery. This is followed by a brief discussion of Jan’s passion: his overriding interest in analyzing mutation rates across species. Several anecdotal stories are included to bring alive one of Jan’s favorite phrases, “to think like a geneticist.” We feature Jan’s genetical approach to mutation studies, along with the biochemistry of DNA polymerase function, our area of expertise. But in the end, we acknowledge, as Jan did, that genetics, also known as in vivo biochemistry, prevails.


2017 ◽  
Author(s):  
Chuanhe Yu ◽  
Haiyun Gan ◽  
Zhiguo Zhang

AbstractThree DNA polymerases (Pol α, Pol δ, and Pol ε) are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has distinct patterns of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has a greater contact with the nascent ssDNA of leading strand on active forks compared with stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitate resumption of DNA synthesis after stress removal.


Sign in / Sign up

Export Citation Format

Share Document