scholarly journals LIPID DROPLET SIGNALING IN METABOLIC HEALTH AND AGING

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 456-456
Author(s):  
Charles Najt

Abstract Lipid droplets (LDs) are neutral lipid rich organelles involved in lipid storage, fatty acid trafficking, and signaling. Emerging evidence from our laboratory and others suggests that the specific LD resident proteins couple/uncouple cells and tissues from inflammation and metabolic dysfunction. However, the mechanism by which LD proteins influences these critical pathways remains unknown. We will present data delving into the role of LD proteins Perilipin (PLIN) 2 and 5 in balancing cellular energy metabolism, mitochondrial function, and inflammation. Data will be presented defining novel mechanisms through which PLIN2 orchestrates eicosanoid production as a means to promote inflammation. We will contrast these findings to PLIN5, which uncouples LD accumulation from metabolic dysfunction and inflammation, in part due to its promotion of SIRT1 signaling. Overall, these studies will highlight a crucial role of LD metabolism and signaling in regulating cellular energy homeostatic processes known to be key players in governing healthspan.

2017 ◽  
Vol 233 (4) ◽  
pp. 3465-3475 ◽  
Author(s):  
Weinan Zhou ◽  
Deepti Ramachandran ◽  
Abdelhak Mansouri ◽  
Megan J. Dailey

2016 ◽  
Vol 5 (4) ◽  
pp. 283-295 ◽  
Author(s):  
Torsten Schröder ◽  
David Kucharczyk ◽  
Florian Bär ◽  
René Pagel ◽  
Stefanie Derer ◽  
...  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262613
Author(s):  
Clara Dreyling ◽  
Martin Hasselmann

The cellular energy metabolism is one of the most conserved processes, as it is present in all living organisms. Mitochondria are providing the eukaryotic cell with energy and thus their genome and gene expression has been of broad interest for a long time. Mitochondrial gene expression changes under different conditions and is regulated by genes encoded in the nucleus of the cell. In this context, little is known about non-model organisms and we provide the first large-scaled gene expression analysis of mitochondrial-linked genes in laying hens. We analysed 28 mitochondrial and nuclear genes in 100 individuals in the context of five life-stages and strain differences among five tissues. Our study showed that mitochondrial gene expression increases during the productive life span, and reacts tissue and strain specific. In addition, the strains react different to potential increased oxidative stress, resulting from the increase in mitochondrial gene expression. The results suggest that the cellular energy metabolism as part of a complex regulatory system is strongly affected by the productive life span in laying hens and thus partly comparable to model organisms. This study provides a starting point for further analyses in this field on non-model organisms, especially in laying-hens.


2020 ◽  
Author(s):  
E. Matthew Morris ◽  
Roberto D. Noland ◽  
Michael E. Ponte ◽  
Michelle L. Montonye ◽  
Julie A. Christianson ◽  
...  

AbstractCentral integration of peripheral neural signals is one mechanism by which systemic energy homeostasis is regulated. Previous work described increased acute food intake following chemical reduction of hepatic fatty acid oxidation and ATP levels, which was prevented by common hepatic branch vagotomy (HBV). However, possible offsite actions of the chemical compounds confound the precise role of liver energy metabolism. Herein, we used a liver-specific PGC1a heterozygous (LPGC1a) mouse model, with associated reductions in mitochondrial fatty acid oxidation and respiratory capacity, to assess the role of liver energy metabolism in systemic energy homeostasis. LPGC1a male mice have 70% greater high-fat/high-sucrose (HFHS) diet-induced weight gain and 35% greater positive energy balance compared to wildtype (WT) (p<0.05). The greater energy balance was associated with altered feeding behavior and lower activity energy expenditure during HFHS in LPGC1a males. Importantly, no differences in HFHS-induced weight gain or energy metabolism was observed between female WT and LPGC1a mice. WT and LPGC1a mice underwent sham or HBV to assess whether vagal signaling was involved in HFHS-induced weight gain of male LPGC1a mice. HBV increased HFHS-induced weight gain (85%, p<0.05) in male WT, but not LPGC1a mice. As above, sham LPGC1a males gain 70% more weight during short-term HFHS feeding than sham WT (p<0.05). These data demonstrate a sexspecific role of reduced liver energy metabolism in acute diet-induced weight gain, and the need of more nuanced assessment of the role of vagal signaling in short-term diet-induced weight gain.Key Points SummaryReduced liver PGC1a expression results in reduced mitochondrial fatty acid oxidation and respiratory capacity in male mice.Male mice with reduced liver PGC1a expression (LPGC1a) demonstrate greater short-term high-fat/high-sucrose diet-induced weight gain compared to wildtype.Greater positive energy balance during HFHS feeding in male LPGC1a mice is associated with altered food intake patterns and reduced activity energy expenditure.Female LPGC1a mice do not have differences in short-term HFHS-induced body weight gain or energy metabolism compared to wildtype.Disruption of vagal signaling through common hepatic branch vagotomy increases short-term HFHS-induced weight gain in male wildtype mice, but does not alter male LPGC1a weight gain.


Sign in / Sign up

Export Citation Format

Share Document