scholarly journals A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system

GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sarah B Kingan ◽  
Julie Urban ◽  
Christine C Lambert ◽  
Primo Baybayan ◽  
Anna K Childers ◽  
...  

ABSTRACT Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.

2019 ◽  
Author(s):  
Sarah B. Kingan ◽  
Julie Urban ◽  
Christine C. Lambert ◽  
Primo Baybayan ◽  
Anna K. Childers ◽  
...  

AbstractA high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies, however, long-read methods have historically had greater input DNA requirements and higher costs than next generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female Spotted Lanternfly (Lycorma delicatula) using a single PacBio SMRT Cell. The Spotted Lanternfly is an invasive species recently discovered in the northeastern United States, threatening to damage economically important crop plants in the region. The DNA from one individual was used to make one standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on one Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing approximately 36-fold coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Further, it was possible to segregate more than half of the diploid genome into the two separate haplotypes. The assembly also recovered two microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


2021 ◽  
Author(s):  
Lauren Coombe ◽  
Janet X Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 2.0-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently runs in under five hours using less than 23GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lauren Coombe ◽  
Janet X. Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Abstract Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of Caenorhabditis elegans, Oryza sativa, and three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 1.2-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently improves upon human assemblies in under five hours using less than 23 GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


2018 ◽  
Author(s):  
Jolene T. Sutton ◽  
Martin Helmkampf ◽  
Cynthia C. Steiner ◽  
M. Renee Bellinger ◽  
Jonas Korlach ◽  
...  

AbstractGenome-level data can provide researchers with unprecedented precision to examine the causes and genetic consequences of population declines, and to apply these results to conservation management. Here we present a high-quality, long-read, de novo genome assembly for one of the world’s most endangered bird species, the Alala. As the only remaining native crow species in Hawaii, the Alala survived solely in a captive breeding program from 2002 until 2016, at which point a long-term reintroduction program was initiated. The high-quality genome assembly was generated to lay the foundation for both comparative genomics studies, and the development of population-level genomic tools that will aid conservation and recovery efforts. We illustrate how the quality of this assembly places it amongst the very best avian genomes assembled to date, comparable to intensively studied model systems. We describe the genome architecture in terms of repetitive elements and runs of homozygosity, and we show that compared with more outbred species, the Alala genome is substantially more homozygous. We also provide annotations for a subset of immunity genes that are likely to be important for conservation applications, and we discuss how this genome is currently being used as a roadmap for downstream conservation applications.


Author(s):  
Stephen R. Doyle ◽  
Alan Tracey ◽  
Roz Laing ◽  
Nancy Holroyd ◽  
David Bartley ◽  
...  

AbstractBackgroundHaemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants, and has become the key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Two draft genome assemblies for H. contortus were reported in 2013, however, both were highly fragmented, incomplete, and differed from one another in important respects. While the introduction of long-read sequencing has significantly increased the rate of production and contiguity of de novo genome assemblies broadly, achieving high quality genome assemblies for small, genetically diverse, outcrossing eukaryotic organisms such as H. contortus remains a significant challenge.ResultsHere, we report using PacBio long read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome. We show a remarkable pattern of almost complete conservation of chromosome content (synteny) with Caenorhabditis elegans, but almost no conservation of gene order. Long-read transcriptome sequence data has allowed us to define coordinated transcriptional regulation throughout the life cycle of the parasite, and refine our understanding of cis- and trans-splicing relative to that observed in C. elegans. Finally, we use this assembly to give a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally.ConclusionsThe H. contortus MHco3(ISE).N1 genome assembly presented here represents the most contiguous and resolved nematode assembly outside of the Caenorhabditis genus to date, together with one of the highest-quality set of predicted gene features. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes, and extends the experimental tractability of this model parasitic nematode in understanding pathogen biology, drug discovery and vaccine development, and important adaptive traits such as drug resistance.


2021 ◽  
Author(s):  
Igor Filipović ◽  
Gordana Rašić ◽  
James Hereward ◽  
Maria Gharuka ◽  
Gregor J Devine ◽  
...  

Background: An optimal starting point for relating genome function to organismal biology is a high-quality nuclear genome assembly, and long-read sequencing is revolutionizing the production of this genomic resource in insects. Despite this, nuclear genome assemblies have been under-represented for agricultural insect pests, particularly from the order Coleoptera. Here we present a de novo genome assembly and structural annotation for the coconut rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), based on Oxford Nanopore Technologies (ONT) long-read data generated from a wild-caught female, as well as the assembly process that also led to the recovery of the complete circular genome assemblies of the beetle's mitochondrial genome and that of the biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). As an invasive pest of palm trees, O. rhinoceros is undergoing an expansion in its range across the Pacific Islands, requiring new approaches to management that may include strategies facilitated by genome assembly and annotation. Results: High-quality DNA isolated from an adult female was used to create four ONT libraries that were sequenced using four MinION flow cells, producing a total of 27.2 Gb of high-quality long-read sequences. We employed an iterative assembly process and polishing with one lane of high-accuracy Illumina reads, obtaining a final size of the assembly of 377.36 Mb that had high contiguity (fragment N50 length = 12 Mb) and accuracy, as evidenced by the exceptionally high completeness of the benchmarked set of conserved single-copy orthologous genes (BUSCO completeness = 99.11%). These quality metrics place our assembly as the most complete of the published Coleopteran genomes. The structural annotation of the nuclear genome assembly contained a highly-accurate set of 16,371 protein-coding genes showing BUSCO completeness of 92.09%, as well as the expected number of non-coding RNAs and the number and structure of paralogous genes in a gene family like Sigma GST. Conclusions: The genomic resources produced in this study form a foundation for further functional genetic research and management programs that may inform the control and surveillance of O. rhinoceros populations, and we demonstrate the efficacy of de novo genome assembly using long-read ONT data from a single field-caught insect.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 393 ◽  
Author(s):  
Jolene T. Sutton ◽  
Martin Helmkampf ◽  
Cynthia C. Steiner ◽  
M. Renee Bellinger ◽  
Jonas Korlach ◽  
...  

Abstract: Genome-level data can provide researchers with unprecedented precision to examine the causes and genetic consequences of population declines, which can inform conservation management. Here, we present a high-quality, long-read, de novo genome assembly for one of the world’s most endangered bird species, the ʻAlalā (Corvus hawaiiensis; Hawaiian crow). As the only remaining native crow species in Hawaiʻi, the ʻAlalā survived solely in a captive-breeding program from 2002 until 2016, at which point a long-term reintroduction program was initiated. The high-quality genome assembly was generated to lay the foundation for both comparative genomics studies and the development of population-level genomic tools that will aid conservation and recovery efforts. We illustrate how the quality of this assembly places it amongst the very best avian genomes assembled to date, comparable to intensively studied model systems. We describe the genome architecture in terms of repetitive elements and runs of homozygosity, and we show that compared with more outbred species, the ʻAlalā genome is substantially more homozygous. We also provide annotations for a subset of immunity genes that are likely to be important in conservation management, and we discuss how this genome is currently being used as a roadmap for downstream conservation applications.


Author(s):  
Hailin Liu ◽  
Shigang Wu ◽  
Alun Li ◽  
Jue Ruan

Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. It also has been widely used to study structural variants, phase haplotypes and more. Here, we introduce the assembler— SMARTdenovo, which is an SMS assembler that follows the overlap-layout-consensus (OLC) paradigm. SMARTdenovo (RRID: SCR_017622) was designed to be a fast assembler that did not require highly accurate raw reads for error correction, unlike other, contemporaneous SMS assemblers. It has performed well for evaluating congeneric assemblers and has been successful for a variety of assembly projects. It is compatible with Canu for assembling high-quality genomes, and several of the assembly strategies in this program have been incorporated into subsequent popular assemblers. The assembler has been in use since 2015, and here we provide information on the development of SMARTdenovo and how to implement its algorithms into current projects.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Chen ◽  
Yixin Zhang ◽  
Amy Y. Wang ◽  
Min Gao ◽  
Zechen Chong

AbstractLong-read de novo genome assembly continues to advance rapidly. However, there is a lack of effective tools to accurately evaluate the assembly results, especially for structural errors. We present Inspector, a reference-free long-read de novo assembly evaluator which faithfully reports types of errors and their precise locations. Notably, Inspector can correct the assembly errors based on consensus sequences derived from raw reads covering erroneous regions. Based on in silico and long-read assembly results from multiple long-read data and assemblers, we demonstrate that in addition to providing generic metrics, Inspector can accurately identify both large-scale and small-scale assembly errors.


Author(s):  
Valentina Peona ◽  
Mozes P.K. Blom ◽  
Luohao Xu ◽  
Reto Burri ◽  
Shawn Sullivan ◽  
...  

AbstractGenome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies have opened up a whole new world of genomic biodiversity. Although these technologies generate high-quality genome assemblies, there are still genomic regions difficult to assemble, like repetitive elements and GC-rich regions (genomic “dark matter”). In this study, we compare the efficiency of currently used sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter starting from the same sample. By adopting different de-novo assembly strategies, we were able to compare each individual draft assembly to a curated multiplatform one and identify the nature of the previously missing dark matter with a particular focus on transposable elements, multi-copy MHC genes, and GC-rich regions. Thanks to this multiplatform approach, we demonstrate the feasibility of producing a high-quality chromosome-level assembly for a non-model organism (paradise crow) for which only suboptimal samples are available. Our approach was able to reconstruct complex chromosomes like the repeat-rich W sex chromosome and several GC-rich microchromosomes. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects around the completeness of both the coding and non-coding parts of the genomes.


Sign in / Sign up

Export Citation Format

Share Document