scholarly journals Eigenvector models for solving the seismic inverse problem for the Helmholtz equation

2020 ◽  
Vol 221 (1) ◽  
pp. 394-414 ◽  
Author(s):  
Florian Faucher ◽  
Otmar Scherzer ◽  
Hélène Barucq

SUMMARY We study the seismic inverse problem for the recovery of subsurface properties in acoustic media. In order to reduce the ill-posedness of the problem, the heterogeneous wave speed parameter is represented using a limited number of coefficients associated with a basis of eigenvectors of a diffusion equation, following the regularization by discretization approach. We compare several choices for the diffusion coefficient in the partial differential equations, which are extracted from the field of image processing. We first investigate their efficiency for image decomposition (accuracy of the representation with respect to the number of variables). Next, we implement the method in the quantitative reconstruction procedure for seismic imaging, following the full waveform inversion method, where the difficulty resides in that the basis is defined from an initial model where none of the actual structures is known. In particular, we demonstrate that the method may be relevant for the reconstruction of media with salt-domes. We use the method in 2-D and 3-D experiments, and show that the eigenvector representation compensates for the lack of low-frequency information, it eventually serves us to extract guidelines for the implementation of the method.

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. R449-R461 ◽  
Author(s):  
Guanghui Huang ◽  
Rami Nammour ◽  
William W. Symes

Source signature estimation from seismic data is a crucial ingredient for successful application of seismic migration and full-waveform inversion (FWI). If the starting velocity deviates from the target velocity, FWI method with on-the-fly source estimation may fail due to the cycle-skipping problem. We have developed a source-based extended waveform inversion method, by introducing additional parameters in the source function, to solve the FWI problem without the source signature as a priori. Specifically, we allow the point source function to be dependent on spatial and time variables. In this way, we can easily construct an extended source function to fit the recorded data by solving a source matching subproblem; hence, it is less prone to cycle skipping. A novel source focusing annihilator, defined as the distance function from the real source position, is used for penalizing the defocused energy in the extended source function. A close data fit avoiding the cycle-skipping problem effectively makes the new method less likely to suffer from local minima, which does not require extreme low-frequency signals in the data. Numerical experiments confirm that our method can mitigate cycle skipping in FWI and is robust against random noise.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. R581-R595 ◽  
Author(s):  
Pan Zhang ◽  
Ru-Shan Wu ◽  
Liguo Han

Seismic envelope inversion (EI) uses low-frequency envelope data to recover long-wavelength components of the subsurface media. Conventional EI uses the same waveform Fréchet derivative as conventional full-waveform inversion. Due to linearization of the sensitivity operator (Born approximation), neither of these methods can yield good inversion results for media with strong preturbations, such as salt domes, when the source lacks low-frequency information. Because seismic envelope data contain large amount of ultra-low-frequency information and the direct envelope Fréchet derivative maps envelope data perturbation directly to velocity perturbation, the direct envelope inversion (DEI) method (based on the direct envelope Fréchet derivative) can handle such strong nonlinear inversion problems. However, this method is sensitive to source wavelet errors. We developed a source-independent DEI method. To achieve the source-independent objective function, we derive a convolution expression for the envelope data. We derive the gradient of the new objective function by using the direct envelope Fréchet derivative. Numerical tests conducted on a 2D salt model indicate that our method can achieve good reconstruction of salt bodies (strong velocity perturbations) and recover low-velocity background structures (weak velocity perturbations), despite using an inaccurate source wavelet.


2014 ◽  
Vol 1 (2) ◽  
pp. 1757-1802
Author(s):  
C. Huang ◽  
L. Dong ◽  
Y. Liu ◽  
B. Chi

Abstract. Low frequency is a key issue to reduce the nonlinearity of elastic full waveform inversion. Hence, the lack of low frequency in recorded seismic data is one of the most challenging problems in elastic full waveform inversion. Theoretical derivations and numerical analysis are presented in this paper to show that envelope operator can retrieve strong low frequency modulation signal demodulated in multicomponent data, no matter what the frequency bands of the data is. With the benefit of such low frequency information, we use elastic envelope of multicomponent data to construct the objective function and present an elastic envelope inversion method to recover the long-wavelength components of the subsurface model, especially for the S-wave velocity model. Numerical tests using synthetic data for the Marmousi-II model prove the effectiveness of the proposed elastic envelope inversion method, especially when low frequency is missing in multicomponent data and when initial model is far from the true model. The elastic envelope can reduce the nonlinearity of inversion and can provide an excellent starting model.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. R369-R387 ◽  
Author(s):  
Guanghui Huang ◽  
Rami Nammour ◽  
William W. Symes

Full-waveform inversion (FWI) faces the persistent challenge of cycle skipping, which can result in stagnation of the iterative methods at uninformative models with poor data fit. Extended reformulations of FWI avoid cycle skipping through adding auxiliary parameters to the model so that a good data fit can be maintained throughout the inversion process. The volume-based matched source waveform inversion algorithm introduces source parameters by relaxing the location constraint of source energy: It is permitted to spread in space, while being strictly localized at time [Formula: see text]. The extent of source energy spread is penalized by weighting the source energy with distance from the survey source location. For transmission data geometry (crosswell, diving wave, etc.) and transparent (nonreflecting) acoustic models, this penalty function is stable with respect to the data-frequency content, unlike the standard FWI objective. We conjecture that the penalty function is actually convex over much larger region in model space than is the FWI objective. Several synthetic examples support this conjecture and suggest that the theoretical limitation to pure transmission is not necessary: The inversion method can converge to a solution of the inverse problem in the absence of low-frequency data from an inaccurate initial velocity model even when reflections and refractions are present in the data along with transmitted energy.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 599
Author(s):  
Danilo Cruz ◽  
João de Araújo ◽  
Carlos da Costa ◽  
Carlos da Silva

Full waveform inversion is an advantageous technique for obtaining high-resolution subsurface information. In the petroleum industry, mainly in reservoir characterisation, it is common to use information from wells as previous information to decrease the ambiguity of the obtained results. For this, we propose adding a relative entropy term to the formalism of the full waveform inversion. In this context, entropy will be just a nomenclature for regularisation and will have the role of helping the converge to the global minimum. The application of entropy in inverse problems usually involves formulating the problem, so that it is possible to use statistical concepts. To avoid this step, we propose a deterministic application to the full waveform inversion. We will discuss some aspects of relative entropy and show three different ways of using them to add prior information through entropy in the inverse problem. We use a dynamic weighting scheme to add prior information through entropy. The idea is that the prior information can help to find the path of the global minimum at the beginning of the inversion process. In all cases, the prior information can be incorporated very quickly into the full waveform inversion and lead the inversion to the desired solution. When we include the logarithmic weighting that constitutes entropy to the inverse problem, we will suppress the low-intensity ripples and sharpen the point events. Thus, the addition of entropy relative to full waveform inversion can provide a result with better resolution. In regions where salt is present in the BP 2004 model, we obtained a significant improvement by adding prior information through the relative entropy for synthetic data. We will show that the prior information added through entropy in full-waveform inversion formalism will prove to be a way to avoid local minimums.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 260
Author(s):  
Meng Suo ◽  
Dong Zhang ◽  
Yan Yang

Inspired by the large number of applications for symmetric nonlinear equations, an improved full waveform inversion algorithm is proposed in this paper in order to quantitatively measure the bone density and realize the early diagnosis of osteoporosis. The isotropic elastic wave equation is used to simulate ultrasonic propagation between bone and soft tissue, and the Gauss–Newton algorithm based on symmetric nonlinear equations is applied to solve the optimal solution in the inversion. In addition, the authors use several strategies including the frequency-grid multiscale method, the envelope inversion and the new joint velocity–density inversion to improve the result of conventional full-waveform inversion method. The effects of various inversion settings are also tested to find a balanced way of keeping good accuracy and high computational efficiency. Numerical inversion experiments showed that the improved full waveform inversion (FWI) method proposed in this paper shows superior inversion results as it can detect small velocity–density changes in bones, and the relative error of the numerical model is within 10%. This method can also avoid interference from small amounts of noise and satisfy the high precision requirements for quantitative ultrasound measurements of bone.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


Sign in / Sign up

Export Citation Format

Share Document