Sensitivity analysis of gravity gradient inversion of the Moho depth—a case example for the Amazonian Craton

2020 ◽  
Vol 221 (3) ◽  
pp. 1896-1912
Author(s):  
Peter Haas ◽  
Jörg Ebbing ◽  
Wolfgang Szwillus

SUMMARY We present a novel approach for linearized gravity inversion to estimate the Moho depth, which allows the use of any gravitational component instead of the vertical gravity component only. The inverse problem is solved with the Gauss–Newton algorithm and the gravitational field of the undulating Moho depth is calculated with tesseroids. Hereby, the density contrast can be laterally variable by using information from seismological regionalization. Our approach is illustrated with a synthetic example, which we use to explore different regularization parameters. The vertical gravity gradient gzz provides the most reasonable results with appropriate parameters. As a case example, we invert for the Moho depth of the Amazonian Craton and its surroundings. The results are constrained by estimates from active seismic measurements. Our new Moho depth model correlates to tectonic domains and is in agreement with previous models. The estimated density contrasts of the tectonic domains agree well with the lithospheric architecture and show with 300–450 kg m–3 lower density contrasts for continental domains, whereas the oceans reveal a density contrast of 450–500 kg m–3. The wider range of estimated density contrast for the continent reflects uncertainties in Precambrian Fold Belts that arise from its small gravity signal. Our results demonstrate that a variable density contrast at the Moho depth is a valuable enhancement for gravity inversion.

2020 ◽  
Author(s):  
Peter Haas ◽  
Joerg Ebbing ◽  
Wolfgang Szwillus ◽  
Philipp Tabelow

<p>We present a new inverse approach to invert satellite gravity gradients for the Moho depth under consideration of a laterally varying density contrast between crust and mantle. The inverse problem is linearized and solved with the classical Gauss-Newton algorithm in a spherical geometry. To ensure stable solutions, the Jacobian is smoothed with second-order Tikhonov regularization. During the inversion, the Moho depth is discretized into tesseroids by reference Moho depth and density contrast, from which the gravitational effect can be calculated. As a computational benefit, the Jacobian is calculated only once and afterwards weighted with the laterally varying density contrast. We look for a Moho depth model that simultaneously explains the gravity gradient field and a least misfit to existing seismic Moho depth determinations. We perform the inversion both on regional and global scale.</p><p>The laterally varying density contrast is based on different tectonic units, which are defined by independent global geological and geophysical data, such as regionalization of dispersion curves. This is beneficial in remote areas, where seismic investigations are very sparse and the crustal structure is to a large extent unknown. Applying the inversion to the Amazonian Craton and its surroundings shows a lower density contrast at the Moho depth for the continental interior compared to oceanic domains. This is in accordance with the tectono-thermal architecture of the lithosphere. The inverted values of the density vary between 300-450 kg/m<sup>3</sup>. The inverted Moho depth shows a clear separation between the Sao Francisco Craton and shallower Amazonian Craton.</p><p>Gravity inversion with a laterally varying density contrast requires a uniform reference Moho depth. On a global scale, we utilize our inversion to estimate a reference Moho depth that is in accordance with crustal buoyancy. The inverted density contrasts show a similar trend like the regional study area. The inverted Moho depth shows expected tectonic features. Our method of computing the Jacobian once and weighting with lateral variable density contrasts is a valuable optimization of standard gravity inversion.</p>


2021 ◽  
Author(s):  
Lucia Seoane ◽  
Guillaume Ramillien ◽  
José Darrozes ◽  
Frédéric Frappart ◽  
Didier Rouxel ◽  
...  

<p>The AGOSTA project initially proposed by our team and lately funded by CNES TOSCA consists of developing efficient approaches to restore seafloor shape (or bathymetry), as well as lithospheric parameters such as the crust and elastic thicknesses, by combining different types of observations including gravity gradient data. As it is based on the second derivatives of the potential versus the space coordinates, gravity gradiometry provides more information inside the Earth system at short wavelengths. The GOCE mission has measured the gravity gradient components of the static field globally and give the possibility to detect more details on the structure of the lithosphere at spatial resolutions less than 200 km. We propose to analyze these satellite-measured gravity tensor components to map the undersea relief more precisely than using geoid or vertical gravity previously considered for this purpose. Inversion of vertical gravity gradient data derived from the radar altimetry technique also offers the possibility to reach greater resolutions (at least 50 km) than the GOCE mission one. The seafloor topography estimates are tested in areas well-covered by independent data for validation, such as around the Great Meteor guyot [29°57′10.6″N, 28°35′31.3″W] and New England seamount chain [37°24′N 60°00′W, 120° 10' 30.4" W] in the Atlantic Ocean as well as the Acapulco seamount [13° 36' 15.4" N, 120° 10' 30.4" W] in the Central Pacific.</p>


Geophysics ◽  
1966 ◽  
Vol 31 (4) ◽  
pp. 816-820 ◽  
Author(s):  
Thomas A. Elkins

The recent interest in borehole gravimeters and vertical gravity gradient meters makes it worthwhile to analyze the simple case of the vertical gravity gradient on the axis of a hollow cylinder, simulating a borehole. From the viewpoint of potential theory the results are interesting because of the discontinuities which may occur when a vertical gradient profile crosses a sudden change in density. Formulas for the vertical gradient effect are given for observations above, inside, and below a hollow cylinder and a solid cylinder. The special case of an infinitely large outer radius for the cylinders is also considered, leading to formulas for the vertical gradient effect inside a borehole on its axis and inside a horizontal slab. Some remarks are made on the influence of the shape of a buried vertical gradient meter on the correction factor for changing the meter reading to density.


Geophysics ◽  
1990 ◽  
Vol 55 (2) ◽  
pp. 218-225 ◽  
Author(s):  
J. Arkani‐Hamed ◽  
W. E. S. Urquhart

Magnetic anomalies of North America are reduced to the pole using a generalized technique which takes into account the variations in the directions of the core field and the magnetization of the crust over North America. The reduced‐to‐the‐pole magnetic anomalies show good correlations with a number of regional tectonic features, such as the Mid‐Continental rift and the collision zones along plate boundaries, which are also apparent in the vertical gravity gradient map of North America. The magnetic anomalies do not, however, show consistent correlation with the vertical gravity gradients, suggesting that magnetic and gravity anomalies do not necessarily arise from common sources.


Geophysics ◽  
1977 ◽  
Vol 42 (4) ◽  
pp. 872-873
Author(s):  
Stephen Thyssen‐Bornemisza

In his paper, Fajklewicz discusses the improvement of vertical gravity gradient measurements arising from a very stable tower apparently not affected by wind gust vibration and climatic changes. Further, the lower plate where the gravity meter is resting can be changed in position to avoid possible disturbances from surface and near‐surface variation, and new methods for correcting and interpreting observed gradients over the vertical interval of about 3 m are presented. Some 1000 field stations were observed, including research work and industrial application.


Geophysics ◽  
1966 ◽  
Vol 31 (1) ◽  
pp. 260-263
Author(s):  
Stephen Thyssen‐Bornemisza

Recently it could be shown (Thyssen‐Bornemisza, 1965) that a vertical lithologic unit cylinder generates a relatively strong anomalous free‐air vertical gravity gradient F′ along the cylinder axis. The following simple example may serve as a demonstration. A small vertical cylinder made of gold or tungsten, where radius r and length L are identical, would generate the anomalous average gradient F′∼3,223 Eötvös units over the interval h=r=L going from the cylinders top surface upward. Suppose r=l=1 cm, then an average gradient exceeding the earth’s normal free‐air vertical gradient F is present over the interval h=1 cm.


Sign in / Sign up

Export Citation Format

Share Document