Reduction to the pole of the North American magnetic anomalies

Geophysics ◽  
1990 ◽  
Vol 55 (2) ◽  
pp. 218-225 ◽  
Author(s):  
J. Arkani‐Hamed ◽  
W. E. S. Urquhart

Magnetic anomalies of North America are reduced to the pole using a generalized technique which takes into account the variations in the directions of the core field and the magnetization of the crust over North America. The reduced‐to‐the‐pole magnetic anomalies show good correlations with a number of regional tectonic features, such as the Mid‐Continental rift and the collision zones along plate boundaries, which are also apparent in the vertical gravity gradient map of North America. The magnetic anomalies do not, however, show consistent correlation with the vertical gravity gradients, suggesting that magnetic and gravity anomalies do not necessarily arise from common sources.

Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. G15-G26 ◽  
Author(s):  
Xiong Li

Curvature describes how much a line deviates from being straight or a surface from being flat. When curvature is used to interpret gravity and magnetic anomalies, we try to delineate geometric information of subsurface structures from an observed nongeometric quantity. In this work, I evaluated curvature attributes of the equipotential surface as functions of gravity gradients and analyzed the differences between the theoretical derivation and a practical application. I computed curvature of a synthetic model that consisted of representative structures (ridge, valley, basin, dome, and vertical cylinder) and curvature of the equipotential surface, gravity, and vertical gravity gradient (which is equivalent to the magnetic reduction-to-the-pole result) due to the same model. A comparison of curvature of such a geometric surface and curvature of different gravity quantities was then made to help understand these curvature differences and an indirect link between curvature of gravity data and actual structures. Finally, I applied curvature analysis to a magnetic anomaly grid in the Gaspé belt of Quebec, Canada, to illustrate its useful property of enhancing subtle features.


Geophysics ◽  
1963 ◽  
Vol 28 (6) ◽  
pp. 1072-1073 ◽  
Author(s):  
Stephen Thyssen‐Bornemisza

In past years vertical gravity‐gradient observations have been repeatedly suggested for the determination of in‐situ densities of rock formations penetrated by a borehole (Smith, 1950; Hammer, 1963). However, calculations made for a point mass to one side of a borehole show that the first vertical derivative of gravity, g, is influenced by this mass to a much greater degree than g itself, or the second vertical derivative. This should be borne in mind if attempts are made to measure vertical gravity gradients in a borehole.


Geophysics ◽  
1943 ◽  
Vol 8 (2) ◽  
pp. 119-133 ◽  
Author(s):  
C. A. Heiland

The trend in gravity exploration in the past years indicates the rather remarkable fact that a method of low resolving power (the gravity meter) has replaced one of higher resolving power (the torsion balance). This is entirely due to the superior speed of the former and suggests an instrument and procedure in which observation time is reduced by (1) reduction in number of quantities measured; (2) use of a reference direction near that of the maximum effect; (3) elimination of the torsionless position as unknown; (4) reduction in period, with compensating increase in optical sensitivity; (5) stabilization of thermal conditions. These objectives are attained by (1) measuring the profile components of gradients and curvature values, preferably at right angles to the assumed strike; whereby, for an ideal two‐dimensional feature, also the vertical gravity gradient is obtained, and the vertical and horizontal gravity components may be calculated by integration; (2) by holding the torsionless position constant with temperature control; (3) by decreasing the period and observation time to 3–4 minutes, and (4) by using a beam arrangement which will give the gradient in only one azimuth, and the profile gradient of the horizontal gravity component in a second azimuth if desired. Latitude and terrain corrections are also somewhat simplified by the proposed procedure.


2021 ◽  
Author(s):  
Lucia Seoane ◽  
Guillaume Ramillien ◽  
José Darrozes ◽  
Frédéric Frappart ◽  
Didier Rouxel ◽  
...  

<p>The AGOSTA project initially proposed by our team and lately funded by CNES TOSCA consists of developing efficient approaches to restore seafloor shape (or bathymetry), as well as lithospheric parameters such as the crust and elastic thicknesses, by combining different types of observations including gravity gradient data. As it is based on the second derivatives of the potential versus the space coordinates, gravity gradiometry provides more information inside the Earth system at short wavelengths. The GOCE mission has measured the gravity gradient components of the static field globally and give the possibility to detect more details on the structure of the lithosphere at spatial resolutions less than 200 km. We propose to analyze these satellite-measured gravity tensor components to map the undersea relief more precisely than using geoid or vertical gravity previously considered for this purpose. Inversion of vertical gravity gradient data derived from the radar altimetry technique also offers the possibility to reach greater resolutions (at least 50 km) than the GOCE mission one. The seafloor topography estimates are tested in areas well-covered by independent data for validation, such as around the Great Meteor guyot [29°57′10.6″N, 28°35′31.3″W] and New England seamount chain [37°24′N 60°00′W, 120° 10' 30.4" W] in the Atlantic Ocean as well as the Acapulco seamount [13° 36' 15.4" N, 120° 10' 30.4" W] in the Central Pacific.</p>


Geophysics ◽  
1966 ◽  
Vol 31 (4) ◽  
pp. 816-820 ◽  
Author(s):  
Thomas A. Elkins

The recent interest in borehole gravimeters and vertical gravity gradient meters makes it worthwhile to analyze the simple case of the vertical gravity gradient on the axis of a hollow cylinder, simulating a borehole. From the viewpoint of potential theory the results are interesting because of the discontinuities which may occur when a vertical gradient profile crosses a sudden change in density. Formulas for the vertical gradient effect are given for observations above, inside, and below a hollow cylinder and a solid cylinder. The special case of an infinitely large outer radius for the cylinders is also considered, leading to formulas for the vertical gradient effect inside a borehole on its axis and inside a horizontal slab. Some remarks are made on the influence of the shape of a buried vertical gradient meter on the correction factor for changing the meter reading to density.


2020 ◽  
Author(s):  
Eline Le Breton

<p>The Western Mediterranean-Alpine belt is remarkable for its tectonic complexity, i.e. strong arcuation of plate boundaries, fast trench retreat, upper-plate extension and switch of subduction/collision polarity around the Adriatic plate (Adria). The kinematic evolution of the Western Mediterranean area is enigmatic due to the intermittently motion of small continental plates (Adria, Iberia and Sardinia-Corsica) that are caught between two major plates (Africa and Europe), converging since Cretaceous time. Reconstructing the past motion of these micro-plates is challenging due to the strong deformation of their boundaries but is key to understand the geodynamic evolution of the whole area.</p><p>The Neogene tectonic evolution is well constrained using magnetic anomalies and transform zones in the Atlantic Ocean for the motion of Europe, Iberia and Africa, and by reconstructing the amount of convergence along fold-and-thrust belts (Apennines, Alps, Dinarides, Provence) and coeval divergence along extensional basins (Liguro-Provencal and Tyrrhenian basins, Sicily Channel Rift Zone) for the motion of Adria and Sardinia-Corsica. Those reconstructions show that Adria had a slight independent motion from Africa and rotated counter-clockwise of about 5º relative to Europe since 20 Ma. However, uncertainties increase and debates arise as one goes back in time. The main debates concern the past motion of Iberia and where its motion relative to Europe is being accommodated in Mesozoic time. Different kinematic scenarios have been proposed depending on the interpretation of paleomagnetic dataset of Iberia, magnetic anomalies in the North Atlantic, and geological-geophysical record of deformation in the Pyrenees and between Iberia and Sardinia-Corsica. Those scenarios have different implications for the tectonic evolution of the Apennines, especially for the Permian-Triassic paleo-tectonic setting of Sardinia, Calabria and Adria, and for the extent and timing of closure of the Liguro-Piemont Ocean. It is important to discuss those implications to better understand subduction processes in the Apennines and their driving forces.</p>


Geophysics ◽  
1977 ◽  
Vol 42 (4) ◽  
pp. 872-873
Author(s):  
Stephen Thyssen‐Bornemisza

In his paper, Fajklewicz discusses the improvement of vertical gravity gradient measurements arising from a very stable tower apparently not affected by wind gust vibration and climatic changes. Further, the lower plate where the gravity meter is resting can be changed in position to avoid possible disturbances from surface and near‐surface variation, and new methods for correcting and interpreting observed gradients over the vertical interval of about 3 m are presented. Some 1000 field stations were observed, including research work and industrial application.


Sign in / Sign up

Export Citation Format

Share Document