scholarly journals Multicomponent, multi-azimuth pre-stack seismic waveform inversion for azimuthally anisotropic media using a parallel and computationally efficient non-dominated sorting genetic algorithm

2014 ◽  
Vol 200 (2) ◽  
pp. 1136-1154 ◽  
Author(s):  
Tao Li ◽  
Subhashis Mallick
2021 ◽  
pp. 1-97
Author(s):  
Lingxiao Jia ◽  
Subhashis Mallick ◽  
Cheng Wang

The choice of an initial model for seismic waveform inversion is important. In matured exploration areas with adequate well control, we can generate a suitable initial model using well information. However, in new areas where well control is sparse or unavailable, such an initial model is compromised and/or biased by the regions with more well controls. Even in matured exploration areas, if we use time-lapse seismic data to predict dynamic reservoir properties, an initial model, that we obtain from the existing preproduction wells could be incorrect. In this work, we outline a new methodology and workflow for a nonlinear prestack isotropic elastic waveform inversion. We call this method a data driven inversion, meaning that we derive the initial model entirely from the seismic data without using any well information. By assuming a locally horizonal stratification for every common midpoint and starting from the interval P-wave velocity, estimated entirely from seismic data, our method generates pseudo wells by running a two-pass one-dimensional isotropic elastic prestack waveform inversion that uses the reflectivity method for forward modeling and genetic algorithm for optimization. We then use the estimated pseudo wells to build the initial model for seismic inversion. By applying this methodology to real seismic data from two different geological settings, we demonstrate the usefulness of our method. We believe that our new method is potentially applicable for subsurface characterization in areas where well information is sparse or unavailable. Additional research is however necessary to improve the compute-efficiency of the methodology.


Author(s):  
Fengxia Gao ◽  
Yanghua Wang

Abstract In seismic waveform inversion, selecting an optimal multi-parameter group is a key step to derive an accurate subsurface model for characterising hydrocarbon reservoirs. There are three parameterizations for the horizontal transverse isotropic (HTI) media, and each parameterization consists of five parameters. The first parameterization (P-I) consists of two velocities and three anisotropy parameters, the second (P-II) consists of five elastic coefficients and the third (P-III) consists of five velocity parameters. The radiation patterns of these three parameterizations indicate a strong interference among five parameters. An effective inversion strategy is a two-stage scheme that first inverts for the velocities or velocity-related parameters and then inverts for all five parameters simultaneously. The inversion results clearly demonstrate that P-I is the best parameterization for seismic waveform inversion in HTI anisotropic media.


Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. SM107-SM114 ◽  
Author(s):  
James C. White ◽  
Richard W. Hobbs

The computationally efficient phase-screen forward modeling technique is extended to allow investigation of nonnormal raypaths. The code is developed to accommodate all diffracted and converted phases up to critical angle, building on a geometric construction method. The new approach relies upon prescanning the model space to assess the complexity of each screen. The propagating wavefields are then divided as a function of horizontal wavenumber, and each subset is transformed to the spatial domain separately, carrying with it angular information. This allows both locally accurate 3D phase corrections and Zoeppritz reflection and transmission coefficients to be applied. The phase-screen code is further developed to handle simple anisotropic media. During phase-screen modeling, propagation is undertaken in the wavenumber domain where exact expressions for anisotropic phase velocities are available. Traveltimes and amplitude effects from a range of anisotropic shales are computed and compared with previous published results.


Sign in / Sign up

Export Citation Format

Share Document