scholarly journals Robust time-domain full waveform inversion with normalized zero-lag cross-correlation objective function

2016 ◽  
pp. ggw485 ◽  
Author(s):  
Youshan Liu ◽  
Jiwen Teng ◽  
Tao Xu ◽  
Yanghua Wang ◽  
Qinya Liu ◽  
...  
Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. R29-R44 ◽  
Author(s):  
Qingchen Zhang ◽  
Hui Zhou ◽  
Qingqing Li ◽  
Hanming Chen ◽  
Jie Wang

Accurate estimation of source wavelet is crucial in a successful full-waveform inversion (FWI); however, it cannot be guaranteed in the case of real seismic data. We have developed time-domain source-independent elastic FWI using the convolution-based objective function that was originally developed for acoustic FWI. We have applied a new time window on the reference traces in the objective function to suppress the noises induced by the convolution and crosscorrelation operations. Also, we have adopted [Formula: see text]-, Huber-, and hybrid-norm objective functions to improve the antinoise ability of our algorithm. We implemented a multiscale inversion strategy to conduct the tests with a quasi-Newton limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method to reduce the sensitivity to initial models and to improve the quality of inversion results. Synthetic tests verified that the new added time window can not only improve the inversion results, but also accelerate the convergence rate. Our method can be implemented successfully without a priori knowledge or accurate estimation of the source wavelet and can be more robust to Gaussian and spike noises, even for a Dirac wavelet. Finally, we applied our method to real seismic data. The similarity between the observed and modeled seismic data, the higher resolution of the migration image, and flatter common image gathers corresponding to the inverted models proved the relevance of our algorithm.


2017 ◽  
Vol 209 (3) ◽  
pp. 1718-1734 ◽  
Author(s):  
Gabriel Fabien-Ouellet ◽  
Erwan Gloaguen ◽  
Bernard Giroux

2013 ◽  
Vol 56 (5) ◽  
pp. 685-703
Author(s):  
DONG Liang-Guo ◽  
CHI Ben-Xin ◽  
TAO Ji-Xia ◽  
LIU Yu-Zhu

2017 ◽  
Author(s):  
Musa Maharramov ◽  
Ganglin Chen ◽  
Partha S. Routh ◽  
Anatoly I. Baumstein ◽  
Sunwoong Lee ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-147
Author(s):  
Peng Yong ◽  
Romain Brossier ◽  
Ludovic Métivier

In order to exploit Hessian information in Full Waveform Inversion (FWI), the matrix-free truncated Newton method can be used. In such a method, Hessian-vector product computation is one of the major concerns due to the huge memory requirements and demanding computational cost. Using the adjoint-state method, the Hessian-vector product can be estimated by zero-lag cross-correlation of the first-order/second-order incident wavefields and the second-order/first-order adjoint wavefields. Different from the implementation in frequency-domain FWI, Hessian-vector product construction in the time domain becomes much more challenging as it is not affordable to store the entire time-dependent wavefields. The widely used wavefield recomputation strategy leads to computationally intensive tasks. We present an efficient alternative approach to computing the Hessian-vector product for time-domain FWI. In our method, discrete Fourier transform is applied to extract frequency-domain components of involved wavefields, which are used to compute wavefield cross-correlation in the frequency domain. This makes it possible to avoid reconstructing the first-order and second-order incident wavefields. In addition, a full-scattered-field approximation is proposed to efficiently simplify the second-order incident and adjoint wavefields computation, which enables us to refrain from repeatedly solving the first-order incident and adjoint equations for the second-order incident and adjoint wavefields (re)computation. With the proposed method, the computational time can be reduced by 70% and 80% in viscous media for Gauss-Newton and full-Newton Hessian-vector product construction, respectively. The effectiveness of our method is also verified in the frame of a 2D multi-parameter inversion, in which the proposed method almost reaches the same iterative convergence of the conventional time-domain implementation.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


Sign in / Sign up

Export Citation Format

Share Document