Stress inversion of shear-tensile focal mechanisms with application to hydraulic fracture monitoring

2018 ◽  
Vol 215 (1) ◽  
pp. 546-563 ◽  
Author(s):  
Suzie Qing Jia ◽  
David W Eaton ◽  
Ron CK Wong
Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. KS39-KS50
Author(s):  
Bing Q. Li ◽  
Jing Du

Current methodologies for stress inversion from microseismic focal mechanisms require the assignment of events to a regular grid and then solving for the stress state at each grid node. This approach can lead to irregularities in the solution because some nodes may contain few or even no events. To address this issue, we modified the algorithm to solve for stresses on an irregular (unstructured) grid. We first use the [Formula: see text]-means algorithm to split the data into suitably sized groups. The centroids of these groups are then considered as the nodes of an unstructured grid, and we simultaneously solve for the stress state in each group using damped inversion. To account for the irregularity of the unstructured grid, we use the reciprocal square distance between nodes as weights, as opposed to the existing method in which a weight of unity is assigned between adjacent nodes on a regular grid. Focal planes are selected from the auxiliary plane using the fault instability criterion. The method is first applied to synthetic data sets in which we simulate and subsequently invert for the stress field around a mode-I fracture at depth, in a strike-slip and in a normal faulting stress regime. Results indicate a stress orientation error of 10° and a stress ratio error between 1% and 10%. We then consider focal mechanism data from an unconventional shale play in the Vaca Muerta Formation in Argentina, and our results suggest the presence of a preexisting strike-slip faulting stress regime. We also find that the unambiguous focal plane picks suggest that the apparent dip-slip focal mechanisms are indeed dip-slip movement along subvertical natural fractures, which correlate well with image log data. We suggest that these dip-slip events are caused by stress changes induced by the opening of the hydraulic fractures.


2016 ◽  
Vol 43 (16) ◽  
pp. 8441-8450 ◽  
Author(s):  
Patricia Martínez‐Garzón ◽  
Václav Vavryčuk ◽  
Grzegorz Kwiatek ◽  
Marco Bohnhoff

2018 ◽  
Vol 215 (3) ◽  
pp. 1887-1899 ◽  
Author(s):  
Xiaoqing Chen ◽  
Runqiu Wang ◽  
Weilin Huang ◽  
Yongyong Jiang ◽  
Chen Yin

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Chaoneng Zhao ◽  
Yongquan Hu ◽  
Jinzhou Zhao ◽  
Qiang Wang ◽  
Pei He ◽  
...  

The fracture propagation in hydraulic fracturing is described as a nonlinear problem dynamic boundary. Due to the limitation of mesh refinement, it is difficult to obtain the real crack propagation path using conventional numerical methods. Meshless methods (MMs) are an effective method to eliminate the dependence on the computational grid in the simulation of fracture propagation. In this paper, a hydraulic fracture propagation model is established based on the element-free Galerkin (EFG) method by introducing jump and branch enrichment functions. Based on the proposed method, three types of fracturing technology are investigated. The results reveal that the stress interference between fractures has an important impact on the propagation path. For the codirectional fracturing simultaneously, fractures propagate in a repel direction. However, the new fracture is attracted and eventually trapped by the adjacent fracture in the sequential fracturing case. For the opposite simultaneous fracturing in multiwells, two fractures with a certain lateral spacing will deflect toward each other. The effect of stress shadow should be used rationally in the optimization of construction parameters; for the single well multistage fracturing, the stage spacing should be out of stress inversion area, while for the simultaneous fracturing of multiple wells, stress inversion zones should be used to maximize communication between natural fractures. Overall, this study establishes a novel and effective approach of using MM to simulate the propagation of hydraulic fractures, which can serve as a useful reference for understanding the mechanism of hydraulic fracture propagation under various conditions.


Geophysics ◽  
2003 ◽  
Vol 68 (2) ◽  
pp. 441-452 ◽  
Author(s):  
James T. Rutledge ◽  
W. Scott Phillips

We produced a high‐resolution microseismic image of a hydraulic fracture stimulation in the Carthage Cotton Valley gas field of east Texas. We improved the precision of microseismic event locations four‐fold over initial locations by manually repicking the traveltimes in a spatial sequence, allowing us to visually correlate waveforms of adjacent sources. The new locations show vertical containment within individual, targeted sands, suggesting little or no hydraulic communication between the discrete perforation intervals simultaneously treated within an 80‐m section. Treatment (i.e., fracture‐zone) lengths inferred from event locations are about 200 m greater at the shallow perforation intervals than at the deeper intervals. The highest quality locations indicate fracture‐zone widths as narrow as 6 m. Similarity of adjacent‐source waveforms, along with systematic changes of phase amplitude ratios and polarities, indicate fairly uniform source mechanisms (fracture plane orientation and sense of slip) over the treatment length. Composite focal mechanisms indicate both left‐ and right‐lateral strike‐slip faulting along near‐vertical fractures that strike subparallel to maximum horizontal stress. The focal mechanisms and event locations are consistent with activation of the reservoir's prevalent natural fractures, fractures that are isolated within individual sands and trend subparallel to the expected hydraulic fracture orientation (maximum horizontal stress direction). Shear activation of these fractures indicates a stronger correlation of induced seismicity with low‐impedance flow paths than is normally found or assumed during injection stimulation.


2008 ◽  
Vol 13 (1) ◽  
pp. 107-124 ◽  
Author(s):  
Giuseppe Pasquale ◽  
Raffaella De Matteis ◽  
Annalisa Romeo ◽  
Rosalba Maresca

Sign in / Sign up

Export Citation Format

Share Document