scholarly journals Functional analysis of the carbohydrate recognition domains and a linker peptide of galectin-9 as to eosinophil chemoattractant activity

Glycobiology ◽  
2002 ◽  
Vol 12 (3) ◽  
pp. 191-197 ◽  
Author(s):  
M. Sato ◽  
N. Nishi ◽  
H. Shoji ◽  
M. Seki ◽  
T. Hashidate ◽  
...  
2020 ◽  
Vol 48 (3) ◽  
pp. 1255-1268
Author(s):  
Alejandro J. Cagnoni ◽  
María F. Troncoso ◽  
Gabriel A. Rabinovich ◽  
Karina V. Mariño ◽  
María T. Elola

Galectin-8 (Gal-8) is a tandem-repeat type galectin with affinity for β-galactosides, bearing two carbohydrate recognition domains (CRD) connected by a linker peptide. The N- and C-terminal domains (Gal-8N and Gal-8C) share 35% homology, and their glycan ligand specificity is notably dissimilar: while Gal-8N shows strong affinity for α(2-3)-sialylated oligosaccharides, Gal-8C has higher affinity for non-sialylated oligosaccharides, including poly-N-acetyllactosamine and/ or A and B blood group structures. Particularly relevant for understanding the biological role of this lectin, full-length Gal-8 can bind cell surface glycoconjugates with broader affinity than the isolated Gal-8N and Gal-8C domains, a trait also described for other tandem-repeat galectins. Herein, we aim to discuss the potential use of separate CRDs in modelling tandem-repeat galectin-8 and its biological functions. For this purpose, we will cover several aspects of the structure–function relationship of this protein including crystallographic structures, glycan specificity, cell function and biological roles, with the ultimate goal of understanding the potential role of each CRD in predicting full-length Gal-8 involvement in relevant biological processes.


2011 ◽  
Vol 434 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Valentina Cattaneo ◽  
María V. Tribulatti ◽  
Oscar Campetella

Gal (galectin)-8 is a tandem-repeat Gal containing N-CRDs (Nterminal carbohydrate-recognition domains) and C-CRDs (C-terminal carbohydrate-recognition domains) with differential glycan-binding specificity fused by a linker peptide. Gal-8 has two distinct effects on CD4 T-cells: at high concentrations it induces antigen-independent proliferation, whereas at low concentrations it co-stimulates antigen-specific responses. Associated Gal-8 structural requirements were dissected in the present study. Recombinant homodimers N–N (two N-terminal CRD chimaera) and C–C (two C-terminal CRD chimaera), but not single C-CRDs or N-CRDs, induced proliferation; however, single domains induced co-stimulation. These results indicate that the tandem-repeat structure was essential only for the proliferative effect, suggesting the involvement of lattice formation, whereas co-stimulation could be mediated by agonistic interactions. In both cases, C–C chimaeras displayed higher activity than Gal-8, indicating that the C-CRD was mainly involved, as was further supported by the strong inhibition of proliferation and co-stimulation in the presence of blood group B antigen, specifically recognized by this domain. Classic Gal inhibitors (lactose and thiodigalactoside) prevented proliferation but not co-stimulatory activity, which was inhibited by 3-O-β-D-galactopyranosyl-D-arabinose. Interestingly, Gal-8 induced proliferation of naïve human CD4 T-cells, varying from non- to high-responder individuals, whereas it promoted cell death of phytohaemagglutinin or CD3/CD28 pre-activated cells. The findings of the present study delineate the differential molecular requirements for Gal-8 activities on T-cells, and suggest a dual activity relying on activation state.


2002 ◽  
Vol 69 ◽  
pp. 59-72 ◽  
Author(s):  
Kurt Drickamer ◽  
Andrew J. Fadden

Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell–cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.


1991 ◽  
Vol 274 (2) ◽  
pp. 575-580 ◽  
Author(s):  
M E Taylor ◽  
K Drickamer

Methods have been developed for expression and purification of eukaryotic proteins by creating fusions with the carbohydrate-recognition domain (CRD) of the galactose-specific rat hepatic lectin. In order to generate the fusion proteins, vectors have been constructed so that cDNAs for passenger proteins can be inserted in any reading frame following a segment of DNA encoding the CRD. The feasibility of using this approach as an aid to protein purification has been demonstrated using human placental alkaline phosphatase. Following expression in either of two different eukaryotic expression systems, the CRD-phosphatase fusion protein can be isolated by one step of affinity chromatography on galactose-Sepharose under mild, non-denaturing conditions. Incorporation of a proteinase-sensitive linker allows cleavage of the CRD from the passenger protein. Immobilised proteinase could be rapidly separated from the cleavage products and the released, active phosphatase was purified away from the CRD by re-chromatography on galactose-Sepharose. These methods provide a means of isolating correctly folded recombinant eukaryotic proteins when cDNAs are available, but the properties of the encoded proteins are unknown.


Glycobiology ◽  
2007 ◽  
Vol 17 (6) ◽  
pp. 663-676 ◽  
Author(s):  
Susanne Carlsson ◽  
Christopher T Öberg ◽  
Michael C Carlsson ◽  
Anders Sundin ◽  
Ulf J Nilsson ◽  
...  

2009 ◽  
Vol 26 (5) ◽  
pp. 707-715 ◽  
Author(s):  
Huan Zhang ◽  
Hao Wang ◽  
Lingling Wang ◽  
Xiaoyan Song ◽  
Jianmin Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document