scholarly journals Activation of host antiviral RNA-sensing factors necessary for herpes simplex virus type 1-activated transcription of host cell fucosyltransferase genes FUT3, FUT5, and FUT6 and subsequent expression of sLex in virus-infected cells

Glycobiology ◽  
2009 ◽  
Vol 19 (7) ◽  
pp. 776-788 ◽  
Author(s):  
Rickard Nordén ◽  
Kristina Nyström ◽  
Sigvard Olofsson
PROTEOMICS ◽  
2009 ◽  
Vol 9 (15) ◽  
pp. 3913-3927 ◽  
Author(s):  
Robin Antrobus ◽  
Kyle Grant ◽  
Bevin Gangadharan ◽  
David Chittenden ◽  
Roger D. Everett ◽  
...  

2005 ◽  
Vol 150 (11) ◽  
pp. 2387-2395 ◽  
Author(s):  
E. Morency ◽  
Y. Couté ◽  
J. Thomas ◽  
P. Texier ◽  
P. Lomonte

1975 ◽  
Vol 23 (4) ◽  
pp. 283-288 ◽  
Author(s):  
L R Trusal ◽  
A Anthony ◽  
J J Docherty

Infection of human embryonic lung cells with herpes simplex virus type 1 (HSV-1) and herpes simplex type 1 (HSV-2) resulted in: (a) qualitative (nuclear cytopathologic) alterations and quantitative (nuclear area) differences in infected compared to control nuclei; (b) increased Feulgen-deoxyribonucleic acid (F-DNA) amounts in infected cells, probably due to viral DNA; (c) higher F-DNA levels in HSV-2 infected cells; and (d) increased rates of F-DNA hydrolysis in viral-infected as compared to uninfected nuclei.


1998 ◽  
Vol 72 (3) ◽  
pp. 2463-2473 ◽  
Author(s):  
Carmela Lamberti ◽  
Sandra K. Weller

ABSTRACT Six genes, including UL32, have been implicated in the cleavage and packaging of herpesvirus DNA into preassembled capsids. We have isolated a UL32 insertion mutant which is capable of near-wild-type levels of viral DNA synthesis; however, the mutant virus is unable to cleave and package viral DNA, consistent with the phenotype of a previously isolated temperature-sensitive herpes simplex virus type 1 mutant, tsN20 (P. A. Schaffer, G. M. Aron, N. Biswal, and M. Benyesh-Melnick, Virology 52:57–71, 1973). A polyclonal antibody which recognizes UL32 was previously used by Chang et al. (Y. E. Chang, A. P. Poon, and B. Roizman, J. Virol. 70:3938–3946, 1996) to demonstrate that UL32 accumulates predominantly in the cytoplasm of infected cells. In this report, a functional epitope-tagged version of UL32 showed that while UL32 is predominantly cytoplasmic, some nuclear staining which colocalizes with the major DNA binding protein (ICP8, UL29) in replication compartments can be detected. We have also used a monoclonal antibody (5C) specific for the hexon form of major capsid protein VP5 to study the distribution of capsids during infection. In cells infected with wild-type KOS (6 and 8 h postinfection), 5C staining patterns indicate that capsids are present in nuclei within replication compartments. These results suggest that cleavage and packaging occur in replication compartments at least at 6 and 8 h postinfection. Cells infected with the UL32 mutant exhibit a hexon staining pattern which is more diffusely distributed throughout the nucleus and which is not restricted to replication compartments. We propose that UL32 may play a role in “bringing” preassembled capsids to the sites of DNA packaging and that the failure to localize to replication compartments may explain the cleavage/packaging defect exhibited by this mutant. These results suggest that the UL32 protein is required at a step distinct from those at which other cleavage and packaging proteins are required and may be involved in the correct localization of capsids within infected cells.


1996 ◽  
Vol 7 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Kyoko Hayashi ◽  
Toshimitsu Hayashi

The antiviral activity of scopadulciol (SDC), a tetracyclic diterpenoid with a chemical structure related to that of aphidicolin, isolated from Scoparia dulcis, was studied in vitro against herpes simplex virus type 1 (HSV-1). SDC was found to inhibit the virus replication as shown by reduction of virus production. The action was not due to the inhibition of viral DNA polymerase activity and virus penetration, but might involve, at least in part, a virucidal effect. SDC did not suppress the viral protein synthesis of infected cells when added at an early stage of HSV-1 replication, but did when added later. When aciclovir (ACV) and SDC were evaluated in combination for antiviral activity against HSV-1 replication and cytotoxicity, these drugs inhibited viral replication in HeLa cells synergistically, but the same combination did not produce synergistic cytotoxicity in HeLa cells. Studies of the deoxynucleotide pool sizes revealed that SDC increased the intracellular dNTP pools and ACV triphosphate level significantly in infected cells when the cells were treated with the combination. These results could account for the synergistic action between SDC and ACV.


Sign in / Sign up

Export Citation Format

Share Document