human embryonic lung
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 25)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Gong ◽  
Chenyi Zheng ◽  
Xing Lyu ◽  
Lini Dong ◽  
Shengyu Tan ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal disease with unknown cause and limited treatment options. Its mechanism needs to be further explored. Sirtuin2 (Sirt2), a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been proved to be involved in the fibrosis and inflammation in the liver, kidney and heart. In this study, we aimed to evaluate the role of Sirt2 in pulmonary fibrosis. We found that Sirt2 expression was upregulated in transforming growth factor-β1 (TGF-β1) treated human embryonic lung fibroblasts. Sirt2 inhibitor AGK2 or the knockdown of Sirt2 expression by targeting small interfering RNA (siRNA) suppressed the fibrogenic gene α-SMA and Fibronectin expression in TGF-β1 treated fibroblasts and primary lung fibroblasts derived from patients with IPF. In addition, Sirt2 inhibition suppresses the phosphorylation of Smad2/3. Co-immunoprecipitation (Co-IP) showed that there is interaction between Sirt2 and Smad3 in the TGF-β1 treated lung fibroblasts. In bleomycin-induced pulmonary fibrosis in mice, AGK2 treatment significantly mitigated the degree of fibrosis and decreased the phosphorylation of Smad2/3. These data suggest that Sirt2 may participate in the development of IPF via regulating the Smad2/3 pathway. Inhibition of Sirt2 would provide a novel therapeutic strategy for this disease.


Author(s):  
Hongbo Liu ◽  
Ming Zhang ◽  
Changzeng Feng ◽  
Shanri Cong ◽  
Danhan Xu ◽  
...  

Coxsackievirus A6 (CVA6) is a key pathogen causing hand, foot and mouth disease (HFMD). However, there are currently no specific antiviral drugs or vaccines for treating infections caused by CVA6. In this study, human rhabdomyosarcoma (RD), African green monkey kidney (Vero), and human embryonic lung diploid fibroblast (KMB17) cells were used to isolate CVA6 from 327 anal swab and fecal samples obtained during HFMD monitoring between 2009 and 2017. The VP1 genes of the isolates were sequenced and genotyped, and the biological characteristics of the representative CVA6 strains were analyzed. A total of 37 CVA6 strains of the D3 gene subtypes were isolated from RD cells, all of which belonged to the epidemic strains in mainland China. Using the adaptive culture method, 10 KMB17 cell-adapted strains were obtained; however, no Vero cell-adapted strains were acquired. Among the KMB17 cell-adapted strains, only KYN-A1205 caused disease or partial death in suckling mice, and its virulence was stronger than its RD cell-adapted strain. The pathogenic KYN-A1205 strain caused strong tropism to the muscle tissue and led to pathological changes, including muscle necrosis and nuclear fragmentation in the forelimb and hindlimb. Sequence analysis demonstrated that the KYN-A1205 strain exhibited multiple amino acid mutations after KMB17 cell adaptation. Moreover, it showed strong pathogenicity, good immunogenicity and genetic stability, and could be used as an experimental CVA6 vaccine candidate.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ping Wang ◽  
Haitao Zhang ◽  
Weiqing Zhao ◽  
Nini Dai

Abstract Purpose Long non-coding RNAs (lncRNAs) play important roles in the development of pneumonia. We aimed to explore the role of the lncRNA KCNQ1OT1 in pneumonia and its underlying mechanisms. Methods The expression of KCNQ1OT1, FOXM1, and miR-370-3p was detected in the serum of 24 children with pneumonia and in 24 healthy controls. Normal human embryonic lung-derived diploid fibroblasts (WI-38 cells) were stimulated with LPS (10 μg/mL) to simulate the cellular model of pneumonia, and cell viability, apoptosis, and inflammation were analysed. Dual luciferase reporter and/or RNA binding protein immunoprecipitation assays were performed to test the relationship between miR-370-3p and KCNQ1OT1/FOXM1. Mice were intratracheally administered LPS (5 mg/kg) to induce an in vivo model of pneumonia, and pathological injury and inflammation were analysed. Results The expression of KCNQ1OT1 and FOXM1 was up-regulated, and miR-370-3p was down-regulated in the serum of children with pneumonia, LPS-treated WI-38 cells, and in lung tissues of LPS-treated mice. Silencing of KCNQ1OT1 or overexpression of miR-370-3p suppressed cell apoptosis and inflammation and facilitated cell viability in LPS-treated WI-38 cells. KCNQ1OT1 directly targets miR-370-3p and negatively regulates its expression. FOXM1 was targeted by miR-370-3p and negatively modulated by miR-370-3p. In addition, silencing of KCNQ1OT1 mitigated LPS-induced lung injury and inflammation in mice. The protective effects of KCNQ1OT1 silencing in LPS-treated WI-38 cells and mice were reversed by silencing of miR-370-3p or overexpression of FOXM1. Conclusion Silencing of KCNQ1OT1 alleviates LPS-induced lung injury by regulating the miR-370-3p/FOXM1 axis in pneumonia.


2021 ◽  
Vol 1031 ◽  
pp. 222-227
Author(s):  
Ekaterina A. Savinova ◽  
Elizaveta S. Ershova ◽  
Olga A. Kraevaya ◽  
Pavel A. Troshin ◽  
S.V. Kostyuk

It is important to take into consideration the new fullerene derivatives genotoxicity. In the present is study, we analyzed the new water-soluble fullerene C70 (F350) effects on the human embryonic lung fibroblasts (HELF) oxidative damage and DNA breaks. We found that the studied compound causes cellular DNA damage and affects the transcriptional activity of cell cycle and cell apoptosis regulating genes.


2021 ◽  
Author(s):  
Tatu Rimpilainen ◽  
Alexandra Nunes ◽  
Rita Calado ◽  
Ana Fernandes ◽  
Joana Andrade ◽  
...  

<p>The search for antibacterial agents for the combat of nosocomial infections is a timely problem, as antibiotic-resistant bacteria continue to thrive. The effect of indoline substituents on the antibacterial properties of aminoalkylphenols was studied, leading to the development of a library of compounds with minimum inhibitory concentrations (MICs) as low as 1.18 µM. Two novel aminoalkylphenols were identified as particularly promising, after MIC and minimum bactericidal concentrations (MBC) determination against a panel of reference strain Gram-positive bacteria, and further confirmed against 40 clinical isolates (<i>Staphylococcus aureus</i>, <i>S. epidermidis</i>, <i>Enterococcus</i> <i>faecalis</i>,<i> E. faecium</i>, and<i> Listeria monocytogenes</i>). The same two aminoalkylphenols displayed low toxicity against two <i>in vivo</i> models (<i>Artemia salina</i> brine shrimp and <i>Saccharomyces cerevisiae</i>)<i>. </i>The <i>in vitro</i> cytotoxicity evaluation (on human keratinocytes and human embryonic lung fibroblast cell lines) of the same compounds was also carried out. They demonstrated a particularly toxic effect on the fibroblast cell lines, with IC<sub>50</sub> in the 1.7-5.1 mM range, thus narrowing their clinical use. The desired increase in the antibacterial properties of the alkylaminophenols, particularly indoline-derived phenolic Mannich bases, was reached by introducing an additional nitro group in the indolinyl substituent or by the replacement of a methyl by a bioisosteric trifluoromethyl substituent. Notably, the introduction of an additional nitro moiety did not confer added toxicity to the alkylaminophenols.</p>


2021 ◽  
Author(s):  
Tatu Rimpilainen ◽  
Alexandra Nunes ◽  
Rita Calado ◽  
Ana Fernandes ◽  
Joana Andrade ◽  
...  

<p>The search for antibacterial agents for the combat of nosocomial infections is a timely problem, as antibiotic-resistant bacteria continue to thrive. The effect of indoline substituents on the antibacterial properties of aminoalkylphenols was studied, leading to the development of a library of compounds with minimum inhibitory concentrations (MICs) as low as 1.18 µM. Two novel aminoalkylphenols were identified as particularly promising, after MIC and minimum bactericidal concentrations (MBC) determination against a panel of reference strain Gram-positive bacteria, and further confirmed against 40 clinical isolates (<i>Staphylococcus aureus</i>, <i>S. epidermidis</i>, <i>Enterococcus</i> <i>faecalis</i>,<i> E. faecium</i>, and<i> Listeria monocytogenes</i>). The same two aminoalkylphenols displayed low toxicity against two <i>in vivo</i> models (<i>Artemia salina</i> brine shrimp and <i>Saccharomyces cerevisiae</i>)<i>. </i>The <i>in vitro</i> cytotoxicity evaluation (on human keratinocytes and human embryonic lung fibroblast cell lines) of the same compounds was also carried out. They demonstrated a particularly toxic effect on the fibroblast cell lines, with IC<sub>50</sub> in the 1.7-5.1 mM range, thus narrowing their clinical use. The desired increase in the antibacterial properties of the alkylaminophenols, particularly indoline-derived phenolic Mannich bases, was reached by introducing an additional nitro group in the indolinyl substituent or by the replacement of a methyl by a bioisosteric trifluoromethyl substituent. Notably, the introduction of an additional nitro moiety did not confer added toxicity to the alkylaminophenols.</p>


2021 ◽  
Vol 22 (4) ◽  
pp. 2145
Author(s):  
Astrid Stütz ◽  
Anna Z. M. Kamptner ◽  
Hedwig Sutterlüty

Kallmann syndrome is the result of innate genetic defects in the fibroblast growth factor (FGF) regulated signaling network causing diminished signal transduction. One of the rare mutations associated with the syndrome alters the Sprouty (Spry)4 protein by converting the serine at position 241 into a tyrosine. In this study, we characterize the tyrosine Spry4 mutant protein in the primary human embryonic lung fibroblasts WI-38 and osteosarcoma-derived cell line U2OS. As demonstrated in a cell signaling assay, Spry4 gains the capability of inhibiting FGF, but not epithelial growth factor (EGF)-induced signaling as a consequence of the tyrosine substitution. Additionally, migration of normal embryonic lung fibroblasts and osteosarcoma-derived cells is potently inhibited by the tyrosine Spry4 variant, while an effect of the wildtype Spry4 protein is hardly measureable. Concerning cell proliferation, the unaltered Spry4 protein is ineffective to influence the WI-38 cells, while the mutated Spry4 protein decelerates the cell doubling. In summary, these data emphasize that like the other mutations associated with Kallmann syndrome the described Spry4 mutation creates a hyperactive version of a selective inhibitory molecule and can thereby contribute to a weakened FGF signaling. Additionally, the study pinpoints a Spry4 variation expanding the applicability of Spry4 in a potential cancer therapy.


2021 ◽  
Vol 22 (3) ◽  
pp. 1398
Author(s):  
Andrea Citarella ◽  
Davide Gentile ◽  
Antonio Rescifina ◽  
Anna Piperno ◽  
Barbara Mognetti ◽  
...  

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245558
Author(s):  
Sena Fujii ◽  
Taiga Muranaka ◽  
Jun Matsubayashi ◽  
Shigehito Yamada ◽  
Akio Yoneyama ◽  
...  

Some human organs are composed of bifurcated structures. Two simple branching modes—monopodial and dipodial—have been proposed. With monopodial branching, child branches extend from the sidewall of the parent branch. With dipodial branching, the tip of the bronchus bifurcates. However, the branching modes of the human bronchial tree have not been elucidated precisely. A total of 48 samples between Carnegie stage (CS) 15 and CS23 belonging to the Kyoto Collection were used to acquire imaging data with phase-contrast X-ray computed tomography. Bronchial trees of all samples were three-dimensionally reconstructed from the image data. We analyzed the lobar bronchus, segmental bronchus, and subsegmental bronchus. After calculating each bronchus length, we categorized the branching mode of the analyzed bronchi based on whether the parent bronchus was divided after generation of the analyzed bronchi. All lobar bronchi were formed with monopodial branching. Twenty-five bifurcations were analyzed to categorize the branching mode of the segmental and subsegmental bronchi; 22 bifurcations were categorized as monopodial branching, two bifurcations were not categorized as any branching pattern, and the only lingular bronchus that bifurcated from the left superior lobar bronchus was categorized as dipodial branching. The left superior lobar bronchus did not shorten during the period from CS17 or CS18, when the child branch was generated, to CS23. All analyzed bronchi that could be categorized, except for one, were categorized as monopodial branching. The branching modes of the lobar bronchus and segmental bronchus were similar in the mouse lung and human lung; however, the modes of the subsegmental bronchi were different. Furthermore, remodeling, such as shrinkage of the bronchus, was not observed during the analysis period. Our three-dimensional reconstructions allowed precise calculation of the bronchus length, thereby improving the knowledge of branching morphogenesis in the human embryonic lung.


Sign in / Sign up

Export Citation Format

Share Document