scholarly journals DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo

2020 ◽  
Vol 29 (7) ◽  
pp. 1168-1179 ◽  
Author(s):  
João Leandro ◽  
Tetyana Dodatko ◽  
Jan Aten ◽  
Natalia S Nemeria ◽  
Xu Zhang ◽  
...  

Abstract Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by a specific encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. Substrate reduction through inhibition of DHTKD1, an enzyme upstream of the defective glutaryl-CoA dehydrogenase, has been investigated as a potential therapy, but revealed the existence of an alternative enzymatic source of glutaryl-CoA. Here, we show that loss of DHTKD1 in glutaryl-CoA dehydrogenase-deficient HEK-293 cells leads to a 2-fold decrease in the established GA1 clinical biomarker glutarylcarnitine and demonstrate that oxoglutarate dehydrogenase (OGDH) is responsible for this remaining glutarylcarnitine production. We furthermore show that DHTKD1 interacts with OGDH, dihydrolipoyl succinyltransferase and dihydrolipoamide dehydrogenase to form a hybrid 2-oxoglutaric and 2-oxoadipic acid dehydrogenase complex. In summary, 2-oxoadipic acid is a substrate for DHTKD1, but also for OGDH in a cell model system. The classical 2-oxoglutaric dehydrogenase complex can exist as a previously undiscovered hybrid containing DHTKD1 displaying improved kinetics towards 2-oxoadipic acid.

2019 ◽  
Author(s):  
João Leandro ◽  
Tetyana Dodatko ◽  
Jan Aten ◽  
Ronald C. Hendrickson ◽  
Roberto Sanchez ◽  
...  

SUMMARYGlutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by a specific encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. Substrate reduction through inhibition of DHTKD1, an enzyme upstream of the defective glutaryl-CoA dehydrogenase, has been investigated as a potential therapy, but revealed the existence of an alternative enzymatic source of glutaryl-CoA. Here we show that loss ofDHTKD1in GCDH-deficient HEK-293 cells leads to a 2-fold decrease in the established GA1 clinical biomarker glutarylcarnitine, and demonstrate that OGDH is responsible for this remaining glutarylcarnitine production. We furthermore show that DHTKD1 interacts with OGDH, DLST and DLD to form a hybrid α-ketoglutaric and α-ketoadipic acid dehydrogenase complex. In summary, α-ketoadipic acid is an in vivo substrate for DHTKD1, but also OGDH. The classic α-ketoglutaric dehydrogenase complex can exist as a previously undiscovered hybrid containing DHTKD1 displaying improved kinetics towards α-ketoadipic acid.


1992 ◽  
Vol 285 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Y Zhao ◽  
J Jaskiewicz ◽  
R A Harris

Feeding clofibric acid to rats caused little or no change in total activity of the liver branched-chain 2-oxo acid dehydrogenase complex (BCODC). No change in mass of liver BCODC was detected by immunoblot analysis in response to dietary clofibric acid. No changes in abundance of mRNAs for the BCODC E1 alpha, E1 beta and E2 subunits were detected by Northern-blot analysis. Likewise, dietary clofibric acid had no effect on the activity state of liver BCODC (percentage of enzyme in the dephosphorylated, active, form) of rats fed on a chow diet. However, dietary clofibric acid greatly increased the activity state of liver BCODC of rats fed on a diet deficient in protein. No stable change in liver BCODC kinase activity was found in response to clofibric acid in either chow-fed or low-protein-fed rats. Clofibric acid had a biphasic effect on flux through BCODC in hepatocytes prepared from low-protein-fed rats. Stimulation of BCODC flux at low concentrations was due to clofibric acid inhibition of BCODC kinase, which in turn allowed activation of BCODC by BCODC phosphatase. Inhibition of BCODC flux at high concentrations was due to direct inhibition of BCODC by clofibric acid. The results suggest that the effects of clofibric acid in vivo on branched-chain amino acid metabolism can be explained by the inhibitory effects of this drug on BCODC kinase.


1990 ◽  
Vol 271 (2) ◽  
pp. 523-528 ◽  
Author(s):  
B Boyer ◽  
R Odessey

The potential for branched-chain 2-oxo acid dehydrogenase complex (BCOADC) activity to be controlled by feedback inhibition was investigated by calculating the Elasticity Coefficients for several feedback inhibitors. We suggest that feedback inhibition is a quantitatively important regulatory mechanism by which branched-chain 2-oxo acid dehydrogenase activity is regulated. The potential for control of enzyme activity is greater for NADH than for the acyl-CoA products, and suggests that factors that alter the redox potential may physiologically regulate BCOADC activity through a feedback inhibitory mechanism in vivo. Local pH may also be an important regulatory control factor.


1993 ◽  
Vol 290 (2) ◽  
pp. 395-399 ◽  
Author(s):  
Y Zhao ◽  
S C Denne ◽  
R A Harris

The developmental pattern of the branched-chain 2-oxo acid dehydrogenase complex was examined in the liver and heart of the rat throughout the suckling period. Basal activity and total activity of the complex were measured as a function of age. The hepatic enzyme activity increased dramatically and was 100% active (dephosphorylated) during the suckling period. The level of protein kinase associated with the complex was particularly low at birth, but like the complex increased throughout the suckling period. The level of heart enzyme also increased as a function of age, but only about 30-45% of the enzyme was active throughout the suckling period. Very low protein levels of liver and heart branched-chain 2-oxo acid dehydrogenase were detected by immunoblot analysis in newborn rats. The mRNA levels for the liver E1 alpha, E1 beta, and E2 subunits in newborn rat were 30%, 19%, and 4% of adult levels respectively. The capacity of the neonatal rat for oxidizing leucine in vivo was low at birth and increased with age. 4-Methyl-2-oxopentanoate was more toxic when given to newborn and 3-day-old pups than 21-day-old pups, as expected from the relative capacities of their tissues to dispose of branched-chain 2-oxo acids by oxidation. Force-feeding suckling rats a protein-free artificial milk formula resulted in partial inactivation of the hepatic branched-chain 2-oxo acid dehydrogenase complex, indicating that the liver of the suckling rat can adapt to conserve branched-chain amino acid residues during periods of protein deficiency.


1999 ◽  
Vol 45 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Rumi KOBAYASHI ◽  
Yoshiharu SHIMOMURA ◽  
Taro MURAKAMI ◽  
Naoya NAKAI ◽  
Megumi OTSUKA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document