scholarly journals Genetic variants in TRPM7 associated with unexplained stillbirth modify ion channel function

2019 ◽  
Vol 29 (11) ◽  
pp. 1797-1807 ◽  
Author(s):  
James H Cartwright ◽  
Qadeer Aziz ◽  
Stephen C Harmer ◽  
Sudhin Thayyil ◽  
Andrew Tinker ◽  
...  

Abstract Stillbirth is the loss of a fetus after 22 weeks of gestation, of which almost half go completely unexplained despite post-mortem. We recently sequenced 35 arrhythmia-associated genes from 70 unexplained stillbirth cases. Our hypothesis was that deleterious mutations in channelopathy genes may have a functional effect in utero that may be pro-arrhythmic in the developing fetus. We observed four heterozygous, nonsynonymous variants in transient receptor potential melastatin 7 (TRPM7), a ubiquitously expressed ion channel known to regulate cardiac development and repolarization in mice. We used site-directed mutagenesis and single-cell patch-clamp to analyze the functional effect of the four stillbirth mutants on TRPM7 ion channel function in heterologous cells. We also used cardiomyocytes derived from human pluripotent stem cells to model the contribution of TRPM7 to action potential morphology. Our results show that two TRPM7 variants, p.G179V and p.T860M, lead to a marked reduction in ion channel conductance. This observation was underpinned by a lack of measurable TRPM7 protein expression, which in the case of p.T860M was due to rapid proteasomal degradation. We also report that human hiPSC-derived cardiomyocytes possess measurable TRPM7 currents; however, siRNA knockdown did not directly affect action potential morphology. TRPM7 variants found in the unexplained stillbirth population adversely affect ion channel function and this may precipitate fatal arrhythmia in utero.

2020 ◽  
Vol 174 ◽  
pp. 113826 ◽  
Author(s):  
Balázs Kelemen ◽  
Erika Lisztes ◽  
Anita Vladár ◽  
Martin Hanyicska ◽  
János Almássy ◽  
...  

2018 ◽  
Vol 120 (3) ◽  
pp. 1198-1211 ◽  
Author(s):  
Ileana Hernández-Araiza ◽  
Sara L. Morales-Lázaro ◽  
Jesús Aldair Canul-Sánchez ◽  
León D. Islas ◽  
Tamara Rosenbaum

Lysophosphatidic acid (LPA) is a bioactive phospholipid that exhibits a wide array of functions that include regulation of protein synthesis and adequate development of organisms. LPA is present in the membranes of cells and in the serum of several mammals and has also been shown to participate importantly in pathophysiological conditions. For several decades it was known that LPA produces some of its effects in cells through its interaction with specific G protein-coupled receptors, which in turn are responsible for signaling pathways that regulate cellular function. Among the target proteins for LPA receptors are ion channels that modulate diverse aspects of the physiology of cells and organs where they are expressed. However, recent studies have begun to unveil direct effects of LPA on ion channels, highlighting this phospholipid as a direct agonist and adding to the knowledge of the field of lipid-protein interactions. Moreover, the roles of LPA in pathophysiological conditions associated with the function of some ion channels have also begun to be clarified, and molecular mechanisms have been identified. This review focuses on the effects of LPA on ion channel function under normal and pathological conditions and highlights our present knowledge of the mechanisms by which it regulates the function and expression of N- and T-type Ca++ channels; M-type K+ channel and inward rectifier K+ channel subunit 2.1; transient receptor potential (TRP) melastatin 2, TRP vanilloid 1, and TRP ankyrin 1 channels; and TWIK-related K+ channel 1 (TREK-1), TREK-2, TWIK-related spinal cord K+ channel (TRESK), and TWIK-related arachidonic acid-stimulated K+ channel (TRAAK).


2018 ◽  
Author(s):  
Yevgen Yudin ◽  
Tibor Rohacs

Opioids exert many of their acute effects through modulating ion channels via Gβγ subunits. Some of their side effects are attributed to β-arrestin recruitment, and several biased agonists that do not activate this pathway have been developed recently. Here we tested the effects of TRV130, PZM21 and herkinorin, three G-protein biased agonists of μ-opioid receptors (μOR), on ion channel targets. Compared to the full μOR agonist DAMGO, all three biased agonists induced smaller activation of G protein-coupled inwardly rectifying potassium channels (GIRK2), and smaller inhibition of Transient Receptor Potential Melastatin (TRPM3) channels. Furthermore, co-application of TRV130 or PZM21, but not herkinorin reduced the effects of DAMGO on both ion channels. CaV2.2 was also inhibited less by PZM21 and TRV130 than by DAMGO. TRV130, PZM21 and herkinorin were also less effective than DAMGO in inducing dissociation of the Gαi /Gβγ complex. We conclude that TRV130, PZM21 are partial agonists of μOR.


Sign in / Sign up

Export Citation Format

Share Document