scholarly journals Influence of co-culture with established human endometrial epithelial and stromal cell lines on sperm movement characteristics

1997 ◽  
Vol 12 (6) ◽  
pp. 1197-1202 ◽  
Author(s):  
J. F. Guerin ◽  
P. Merviel ◽  
M. Plachot
Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2311-2320 ◽  
Author(s):  
FM Lemoine ◽  
S Dedhar ◽  
GM Lima ◽  
CJ Eaves

Abstract Marrow stromal elements produce as yet uncharacterized soluble growth factors that can stimulate the proliferation of murine pre-B cells, although close contact between these two cell types appears to ensure a better pre-B cell response. We have now shown that freshly isolated normal pre-B cells (ie, the B220+, surface mu- fraction of adult mouse bone marrow) adhere to fibronectin (FN) via an RGD cell-attachment site, as shown in a serum-free adherence assay, and they lose this functional ability on differentiation in vivo into B cells (ie, the B220+, surface mu+ fraction). Similarly, cells from an immortalized but stromal cell-dependent and nontumorigenic murine pre-B cell line originally derived from a Whitlock-Witte culture were also found to adhere to fibronectin (FN) via an RGD cell-attachment site. Moreover, in the presence of anti-FN receptor antibodies, the ability of this immortalized pre-B cell line to proliferate when co-cultured with a supportive stromal cell line (M2–10B4 cells) was markedly reduced (down to 30% of control). This suggests that pre-B cell attachment to FN on stromal cells may be an important component of the mechanism by which stromal cells stimulate normal pre-B cell proliferation and one that is no longer operative to control their more differentiated progeny. Two differently transformed pre-B cell lines, both of which are autocrine, stromal-independent, tumorigenic in vivo, and partially or completely differentiation-arrested at a very early stage of pre-B cell development, did not bind to FN. In addition, anti-FN receptor antibodies were much less effective in diminishing the ability of these tumorigenic pre-B cells to respond to M2–10B4 cell stimulation, which could still be demonstrated when the tumorigenic pre-B cells were co- cultured with M2–10B4 cells at a sufficiently low cell density. Analysis of cell surface molecules immunoprecipitated from both the nontumorigenic and tumorigenic pre-B cell lines by an anti-FN receptor antibody showed an increase in very late antigen (VLA) alpha chain(s) in both tumorigenic pre-B cell lines and a decrease in the beta 1 chain in one. Interestingly, all of the pre-B cell lines expressed similar amounts of messenger RNA for the beta 1 chain of the FN receptor. These results suggest that alteration of FN receptor expression on pre-B cells may represent a mechanism contributing to the outgrowth of leukemic pre-B cells with an autocrine phenotype and capable of stromal cell-independent, autonomous growth.


Cell ◽  
1987 ◽  
Vol 48 (6) ◽  
pp. 1009-1021 ◽  
Author(s):  
Cheryl A. Whitlock ◽  
George F. Tidmarsh ◽  
Christa Muller-Sieburg ◽  
Irving L. Weissman

Blood ◽  
1987 ◽  
Vol 70 (6) ◽  
pp. 1777-1783 ◽  
Author(s):  
SL Kirby ◽  
SA Bentley

There is evidence indicating that stromal proteoglycans are an important functional component of the hematopoietic microenvironment. Proteoglycan synthesis was therefore investigated in the MS3–2A and D2XRII hematopoietic stromal cell lines. These lines differ in their capacity to support hematopoiesis in vitro, D2XRII supporting in vitro hematopoiesis, whereas MS3–2A does not. Cells were labeled with 35S- sulfate as precursor, and 4 mol/L guanidine HCl extracts of cells and media were analyzed by ion-exchange chromatography, cesium chloride density gradient centrifugation, and molecular sieve chromatography. Proteoglycans were further examined by enzymatic and chemical digestions. MS3–2A cells produced at least three proteoglycan species. Two chondroitin/dermatan sulfate (CS/DS) proteoglycans, Kav = 0.40 and Kav = 0.68 on Sepharose CL-2B, were present primarily in the medium. The respective glycosaminoglycan molecular weight (mol wt) values were 38 kd and 40 kd. A heparan sulfate (HS) proteoglycan of Kav = 0.58 and glycosaminoglycan mol wt 36 kd was present primarily in the cell layer extract. D2XRII cells synthesized two HS proteoglycans. The larger (Kav = 0.45; glycosaminoglycan mol wt, 30 kd) was of low density on gradient centrifugation and more prominent in the cell layer extracts, whereas the smaller (Kav = 0.68; glycosaminoglycan mol wt, 38 kd) was dense and present mainly in the culture medium. A single CS/DS proteoglycan species of Kav 0.78 and average glycosaminoglycan of mol wt 18 kd was present in roughly equal amounts in the medium and in the cell layer. MS3–2A and D2XRII thus appear phenotypically distinct with respect to proteoglycan synthesis. These differences are discussed in relation to the microenvironmental function of bone marrow stromal elements.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Honglei Ji ◽  
Maohua Miao ◽  
Hong Liang ◽  
Huijuan Shi ◽  
Dasheng Ruan ◽  
...  

Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2436-2443 ◽  
Author(s):  
MC Yoder ◽  
VE Papaioannou ◽  
PP Breitfeld ◽  
DA Williams

Abstract The mechanisms involved in the induction of yolk sac mesoderm into blood islands and the role of visceral endoderm and mesoderm cells in regulating the restricted differentiation and proliferation of hematopoietic cells in the yolk sac remain largely unexplored. To better define the role of murine yolk sac microenvironment cells in supporting hematopoiesis, we established cell lines from day-9.5 gestation murine yolk sac visceral endoderm and mesoderm layers using a recombinant retrovirus vector containing Simian virus 40 large T- antigen cDNA. Obtained immortalized cell lines expressed morphologic and biosynthetic features characteristic of endoderm and mesoderm cells from freshly isolated yolk sacs. Similar to the differentiation of blood island hematopoietic cells in situ, differentiation of hematopoietic progenitor cells in vitro into neutrophils was restricted and macrophage production increased when bone marrow (BM) progenitor cells were cultured in direct contact with immortalized yolk sac cell lines as compared with culture on adult BM stromal cell lines. Yolk sac- derived cell lines also significantly stimulated the proliferation of hematopoietic progenitor cells compared with the adult BM stromal cell lines. Thus, yolk sac endoderm- and mesoderm-derived cells, expressing many features of normal yolk sac cells, alter the growth and differentiation of hematopoietic progenitor cells. These cells will prove useful in examining the cellular interactions between yolk sac endoderm and mesoderm involved in early hematopoietic stem cell proliferation and differentiation.


1993 ◽  
Vol 54 (6) ◽  
pp. 1017-1021 ◽  
Author(s):  
Sigrun Gabius ◽  
Ralf Wawotzny ◽  
Sabine Wilholm ◽  
Ulrikc Martin ◽  
Bernhard Wörmann ◽  
...  

Stem Cells ◽  
1994 ◽  
Vol 12 (4) ◽  
pp. 409-415 ◽  
Author(s):  
Takeshi Otsuka ◽  
Tomonori Ogo ◽  
Teruaki Nakano ◽  
Hiroaki Niiro ◽  
Seiji Kuga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document