Suppression of transforming growth factor-beta signaling enhances spermatogonial proliferation and spermatogenesis recovery following chemotherapy

2019 ◽  
Vol 34 (12) ◽  
pp. 2430-2442 ◽  
Author(s):  
Seyedeh-Faezeh Moraveji ◽  
Fereshteh Esfandiari ◽  
Sara Taleahmad ◽  
Saman Nikeghbalian ◽  
Forough-Azam Sayahpour ◽  
...  

Abstract STUDY QUESTION Could small molecules (SM) which target (or modify) signaling pathways lead to increased proliferation of undifferentiated spermatogonia following chemotherapy? SUMMARY ANSWER Inhibition of transforming growth factor-beta (TGFb) signaling by SM can enhance the proliferation of undifferentiated spermatogonia and spermatogenesis recovery following chemotherapy. WHAT IS KNOWN ALREADY Spermatogonial stem cells (SSCs) hold great promise for fertility preservation in prepubertal boys diagnosed with cancer. However, the low number of SSCs limits their clinical applications. SM are chemically synthesized molecules that diffuse across the cell membrane to specifically target proteins involved in signaling pathways, and studies have reported their ability to increase the proliferation or differentiation of germ cells. STUDY DESIGN, SIZE, DURATION In our experimental study, spermatogonia were collected from four brain-dead individuals and used for SM screening in vitro. For in vivo assessments, busulfan-treated mice were treated with the selected SM (or vehicle, the control) and assayed after 2 (three mice per group) and 5 weeks (two mice per group). PARTICIPANTS/MATERIALS, SETTING, METHODS We investigated the effect of six SM on the proliferation of human undifferentiated spermatogonia in vitro using a top–bottom approach for screening. We used histological, hormonal and gene-expression analyses to assess the effect of selected SM on mouse spermatogenesis. All experiments were performed at least in triplicate and were statistically evaluated by Student’s t-test and/or one-way ANOVA followed by Scheffe’s or Tukey’s post-hoc. MAIN RESULTS AND THE ROLE OF CHANCE We found that administration of SB431542, as a specific inhibitor of the TGFb1 receptor (TGFbR1), leads to a two-fold increase in mouse and human undifferentiated spermatogonia proliferation. Furthermore, injection of SB to busulfan-treated mice accelerated spermatogenesis recovery as revealed by increased testicular size, weight and serum level of inhibin B. Moreover, SB administration accelerated both the onset and completion of spermatogenesis. We demonstrated that SB promotes proliferation in testicular tissue by regulating the cyclin-dependent kinase (CDK) inhibitors 4Ebp1 and P57 (proliferation inhibitor genes) and up-regulating Cdc25a and Cdk4 (cell cycle promoting genes). LIMITATIONS, REASONS FOR CAUTION The availability of human testis was the main limitation in this study. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to report acceleration of spermatogenesis recovery following chemotherapy by administration of a single SM. Our findings suggest that SB is a promising SM and should be assessed in future clinical trials for preservation of fertility in men diagnosed with cancer or in certain infertility cases (e.g. oligospermia). STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Royan Institute and National Institute for Medical Research Development (NIMAD, grant no 963337) granted to H.B. The authors have no conflict of interest to report.

1991 ◽  
Vol 173 (5) ◽  
pp. 1121-1132 ◽  
Author(s):  
R A Fava ◽  
N J Olsen ◽  
A E Postlethwaite ◽  
K N Broadley ◽  
J M Davidson ◽  
...  

We have studied the consequences of introducing human recombinant transforming growth factor beta 1 (hrTGF-beta 1) into synovial tissue of the rat, to begin to better understand the significance of the fact that biologically active TGF-beta is found in human arthritic synovial effusions. Within 4-6 h after the intra-articular injection of 1 microgram of hrTGF-beta 1 into rat knee joints, extensive recruitment of polymorphonuclear leukocytes (PMNs) was observed. Cytochemistry and high resolution histological techniques were used to quantitate the influx of PMNs, which peaked 6 h post-injection. In a Boyden chamber assay, hrTGF-beta 1 at 1-10 fg/ml elicited a chemotactic response from PMNs greater in magnitude than that evoked by FMLP, establishing that TGF-beta 1 is an effective chemotactic agent for PMNs in vitro as well as in vivo. That PMNs may represent an important source of TGF-beta in inflammatory infiltrates was strongly suggested by a demonstration that stored TGF-beta 1 was secreted during phorbol myristate acetate-stimulated degranulation in vitro. Acid/ethanol extracts of human PMNs assayed by ELISA contained an average of 355 ng of TGF/beta 1 per 10(9) cells potentially available for secretion during degranulation of PMNs. [3H]Thymidine incorporation in vivo and autoradiography of tissue sections revealed that widespread cell proliferation was triggered by TGF-beta 1 injection. Synovial lining cells and cells located deep within the subsynovial connective tissue were identified as sources of at least some of the new cells that contribute to TGF-beta 1-induced hyperplasia. Our results demonstrate that TGF-beta is capable of exerting pathogenic effects on synovial tissue and that PMNs may represent a significant source of the TGF-beta present in synovial effusions.


1991 ◽  
Vol 174 (3) ◽  
pp. 539-545 ◽  
Author(s):  
J S Silva ◽  
D R Twardzik ◽  
S G Reed

The effects of transforming growth factor beta (TGF-beta) on interferon gamma-mediated killing of the intracellular protozoan parasite Trypanosoma cruzi and on the course of T. cruzi infection in mice were investigated. Spleen cells from mice with acute T. cruzi infections were found to produce elevated levels of biologically active TGF-beta in vitro, and the possibility that TGF-beta may mediate certain aspects of T. cruzi infection was then addressed. When mouse peritoneal macrophages were treated with TGF-beta in vitro, the ability of IFN-gamma to activate intracellular inhibition of the parasite was blocked. This occurred whether cells were treated with TGF-beta either before or after IFN-gamma treatment. TGF-beta treatment also blocked the T. cruzi-inhibiting effects of IGN-gamma on human macrophages. Additionally, treatment of human macrophages with TGF-beta alone led to increased parasite replication in these cells. The effects of TGF-beta on T. cruzi infection in vivo were then investigated. Susceptible C57BL/6 mice developed higher parasitemias and died earlier when treated with TGF-beta during the course of infection. Resistant C57BL/6 x DBA/2 F1 mice treated with TGF-beta also had increased parasitemias, and 50% mortality, compared with no mortality in infected, saline-treated controls. A single dose of TGF-beta, given at the time of infection, was sufficient to significantly decrease resistance to infection in F1 mice and to exacerbate infection in susceptible C57BL/6 mice. Furthermore, a single injection of TGF-beta was sufficient to counter the in vivo protective effects of IFN-gamma. We conclude that TGF-beta, produced during acute T. cruzi infection in mice, is a potent inhibitor of the effects of macrophage activating cytokines in vivo and in vitro and may play a role in regulating infection.


Reproduction ◽  
2000 ◽  
pp. 85-91 ◽  
Author(s):  
S Hasthorpe ◽  
S Barbic ◽  
PJ Farmer ◽  
JM Hutson

At birth, the mouse gonocyte does not resume mitotic activity for several days in vivo but, in an in vitro clonogenic system, cell division commences soon after culture. Somatic testis cell underlays had potent inhibitory activity on gonocyte-derived colony formation (23 +/- 15% compared with 84 +/- 1% in controls; P = 0.0001) when added to cultures of gonocytes in vitro. A Sertoli cell line, TM4B, had an even more pronounced effect on gonocyte clonogenic capacity, with 1 +/- 1% compared with 72 +/- 17% colony formation in controls (P = 0.0003). Testis cells appeared to have a direct inhibitory effect since testis-conditioned medium did not show a significant reduction in the number of colonies. The observed reduction in colony formation with the testis cell underlay was not accounted for by decreased attachment of gonocytes as simultaneous addition of a single cell suspension of testis cells was still effective in significantly reducing colony number when compared with controls (P = 0.01). Therefore, the observed inhibition exerted by testis cells appears to be a consequence of decreased proliferation of gonocytes. Growth factors belonging to the transforming growth factor beta superfamily which are known to be expressed in testis, such as transforming growth factor beta and epidermal growth factor, did not exert any inhibitory action on gonocyte-derived colony formation when added together or alone. However, a shift to a smaller colony size occurred in the presence of transforming growth factor beta and transforming growth factor beta plus epidermal growth factor, indicating a reduction in colony cell proliferation. Evidence for the expression of the Mullerian inhibiting substance receptor on newborn gonocytes using in situ hybridization was inconclusive. This finding was in agreement with the lack of a direct action of Mullerian inhibiting substance on the formation of gonocyte-derived colonies in vitro. Leukaemia inhibitory factor, alone or in combination with forskolin, had neither an inhibitory nor an enhancing effect on gonocyte-derived colony formation. An in vitro clonogenic method to assay for the proliferation of gonocytes in the presence of specific growth factors, cell lines, testis cell underlays and cell suspensions was used to identify a somatic cell-mediated inhibitor which may be responsible for the inhibitory action on gonocyte proliferation in vivo shortly after birth.


1990 ◽  
Vol 172 (6) ◽  
pp. 1777-1784 ◽  
Author(s):  
S C Wallick ◽  
I S Figari ◽  
R E Morris ◽  
A D Levinson ◽  
M A Palladino

Using recombinant DNA technology, we have generated Chinese hamster ovary (CHO) cell lines that synthesize latent transforming growth factor beta 1 (TGF-beta 1) to study immune regulation by TGF-beta 1. In vitro, latent TGF-beta 1 synthesized by transfectants or added exogenously as a purified complex after activation inhibited CTL generation to a similar extent as seen with acid-activated recombinant human (rHu) TGF-beta 1. In vivo, serum from nu/nu mice bearing CHO/TGF-beta 1 tumors contained significant levels of latent TGF-beta 1 in addition to depressed natural killer (NK) activity in spleens which paralleled that seen in C3H/HeJ mice treated with acid-activated rHuTGF-beta 1. rHuTGF-beta 1 treatment of mice receiving heart allografts resulted in significant enhancement of organ graft survival. Because of possible regulated tissue-specific activation, administration of latent rather than active TGF-beta may provide a better route to deliver this powerful immunosuppressive agent in vivo.


Sign in / Sign up

Export Citation Format

Share Document