scholarly journals Can Morphology Predict the Conservation Status of Iguanian Lizards?

2020 ◽  
Vol 60 (2) ◽  
pp. 535-548 ◽  
Author(s):  
Donald B Miles

Synopsis The integrity of regional and local biological diversity is under siege as a result of multiple anthropogenic threats. The conversion of habitats, such as rain forests, into agricultural ecosystems, reduces the area available to support species populations. Rising temperatures and altered rainfall patterns lead to additional challenges for species. The ability of conservation biologists to ascertain the threats to a species requires data on changes in distribution, abundance, life history, and ecology. The International Union for the Conservation of Nature (IUCN) uses these data to appraise the extinction risk for a species. However, many species remain data deficient (DD) or unassessed. Here, I use 14 morphological traits related to locomotor function, habitat, and feeding to predict the threat status of over 400 species of lizards in the infraorder Iguania. Morphological traits are an ideal proxy for making inferences about a species’ risk of extinction. Patterns of morphological covariation have a known association with habitat use, foraging behavior, and physiological performance across multiple taxa. Results from phylogenetic general linear models revealed that limb lengths as well as head characters predicted extinction risk. In addition, I used an artificial neural network (ANN) technique to generate a classification function based on the morphological traits of species with an assigned IUCN threat status. The network approach identified eight morphological traits as predictors of extinction risk, which included head and limb characters. The best supported model had a classification accuracy of 87.4%. Moreover, the ANN model predicted >18% of DD/not assessed species were at risk of extinction. The predicted assessments were supported by other sources of threat status, for example, Convention on International Trade in Endangered Species appendices. Because of the functional link between morphology, performance, and ecology, an ecomorphological approach may be a useful tool for rapid assessment of DD or poorly known species.

2021 ◽  
Author(s):  
Thomas Haevermans ◽  
Jessica Tressou ◽  
Joon Kwon ◽  
Roseli Pellens ◽  
Anne Dubéarnès ◽  
...  

Curbing biodiversity loss and its impact on ecosystem services, resilience and Nature's Contributions to People is one of the main challenges of our generation (IPBES, 2019b, 2019a; Secretariat of the United Nations Convention on Biological Diversity, 2020). A global baseline assessment of the threat status of all of biodiversity is crucial to monitor the progress of conservation policies worldwide (Mace & al., 2000; Secretariat of the United Nations Convention on Biological Diversity, 2021) and target priority areas for conservation (Walker & al., 2021). However, the magnitude of the task seems insurmountable, as even listing the organisms already known to science is a challenge (Nic Lughadha & al., 2016; Borsch & al., 2020; Govaerts & al., 2021). A new approach is needed to overcome this stumbling block and scale-up the assessment of extinction risk. Here we show that analyses of natural history mega-datasets using artificial intelligence allows us to predict a baseline conservation status for all vascular plants and identify target areas for conservation corresponding to hotspots optimally capturing different aspects of biodiversity. We illustrate the strong potential of AI-based methods to reliably predict extinction risk on a global scale. Our approach not only retrieved recognized biodiversity hotspots but identified new areas that may guide future global conservation action (Myers & al., 2000; Brooks & al., 2006). To further work in this area and guide the targets of the post-2020 biodiversity framework (Díaz & al., 2020a; Secretariat of the United Nations Convention on Biological Diversity, 2020; Mair & al., 2021), it will be necessary to accelerate the acquisition of fundamental data and allow inclusion of social and economic factors (Possingham & Wilson, 2005).


2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Kirandeep K Dhami

The Aichi Biodiversity targets are a set of twenty targets for the Convention of Biological Diversity (CBD) that were developed with the intention to help each participating country to measure the progress made in preventing the loss of biological diversity. These targets provide a 10-year period for taking action by the countries. These targets setup in 2010 are expected to be achieved within 2020 by all the 193 countries signatory to CBD. Aichi Biodiversity Target 12 is considered to be one of the most important targets, which is directly or indirectly linked to all of the other 19 CBD Targets. Aichi-12 sets up the goal for each country to prevent the extinction of known threatened species and improve the conservation status of those species that are on decline. This target calls for establishment of conservation plans for species that face a high risk to extinction. Hence, it is of urgent need to understand the extinction risk posed to each of the threatened species in the country and the factors that are responsible for the population decline in species. Therefore, it is important for taking initiatives to remove/reduce those factors posing risk to the survival of species. This study presents a brief overview of the status and progress made by India towards achievement of Aichi-12.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Irfan I. Sofi ◽  
◽  
Shivali Verma ◽  
Aijaz H. Ganie ◽  
Namrata Sharma ◽  
...  

A lack of precise information about the threat status of species hampers their effective conservation. The Target 2 of the Convention on Biological Diversity calls for evaluation of threat status at global, national and regional levels to identify plant species of urgent conservation concern. Here we have empirically assessed the threat status of three valuable medicinal plant species (Trillium govanianum, Rheum tibeticum, and Arnebia euchroma) through extensive field studies and herbarium consultations in Kashmir Himalaya and cold desert region of Trans-Himalayan Ladakh. In accordance with the IUCN Red List categories and criteria, each of the three target species turned out to be Near Threatened (NT). According to the NatureServe Conservation Status Assessment, each of these species faces the overall threat impact of «High» to «Very high». We found that the anthropogenic threats emanating from unplanned economic development, road construction and other infrastructure related projects contribute to a fast decline in natural populations of these three species. Keeping in view the value of these species, on the one hand, and growing threats to their survival in the wild, on the other one, we call for urgent conservation strategies in the vulnerable Himalayan habitats for regional socio-economic development.


PhytoKeys ◽  
2019 ◽  
Vol 136 ◽  
pp. 45-96 ◽  
Author(s):  
Iain Darbyshire ◽  
Jonathan Timberlake ◽  
Jo Osborne ◽  
Saba Rokni ◽  
Hermenegildo Matimele ◽  
...  

An annotated checklist of the 271 strict-endemic taxa (235 species) and 387 near-endemic taxa (337 species) of vascular plants in Mozambique is provided. Together, these taxa constitute c. 9.3% of the total currently known flora of Mozambique and include five strict-endemic genera (Baptorhachis, Emicocarpus, Gyrodoma, Icuria and Micklethwaitia) and two near-endemic genera (Triceratella and Oligophyton). The mean year of first publication of these taxa is 1959, with a marked increase in description noted following the onset of the two major regional floristic programmes, the “Flora of Tropical East Africa” and “Flora Zambesiaca”, and an associated increase in botanical collecting effort. New taxa from Mozambique continue to be described at a significant rate, with 20 novelties described in 2018. Important plant families for endemic and near-endemic taxa include Fabaceae, Rubiaceae and Euphorbiaceae s.s. There is a high congruence between species-rich plant families and endemism with the notable exceptions of the Poaceae, which is the second-most species rich plant family, but outside of the top ten families in terms of endemism, and the Euphorbiaceae, which is the seventh-most species rich plant family, but third in terms of endemism. A wide range of life-forms are represented in the endemic and near-endemic flora, with 49% being herbaceous or having herbaceous forms and 55% being woody or having woody forms. Manica Province is by far the richest locality for near-endemic taxa, highlighting the importance of the cross-border Chimanimani-Nyanga (Manica) Highlands shared with Zimbabwe. A total of 69% of taxa can be assigned to one of four cross-border Centres of Endemism: the Rovuma Centre, the Maputaland Centre sensu lato, and the two mountain blocks, Chimanimani-Nyanga and Mulanje-Namuli-Ribaue. Approximately 50% of taxa have been assessed for their extinction risk and, of these, just over half are globally threatened (57% for strict-endemics), with a further 10% (17% for strict-endemics) currently considered to be Data Deficient, highlighting the urgent need for targeted conservation of Mozambique’s unique flora. This dataset will be a key resource for ongoing efforts to identify “Important Plant Areas – IPAs” in Mozambique, and to promote the conservation and sustainable management of these critical sites and species, thus enabling Mozambique to meet its commitments under the Convention on Biological Diversity (CBD).


Author(s):  
Nussaïbah B. Raja ◽  
Andreas Lauchstedt ◽  
John M. Pandolfi ◽  
Sun W. Kim ◽  
Ann F. Budd ◽  
...  

2015 ◽  
Vol 370 (1662) ◽  
pp. 20140015 ◽  
Author(s):  
Neil Brummitt ◽  
Steven P. Bachman ◽  
Elina Aletrari ◽  
Helen Chadburn ◽  
Janine Griffiths-Lee ◽  
...  

The IUCN Sampled Red List Index (SRLI) is a policy response by biodiversity scientists to the need to estimate trends in extinction risk of the world's diminishing biological diversity. Assessments of plant species for the SRLI project rely predominantly on herbarium specimen data from natural history collections, in the overwhelming absence of accurate population data or detailed distribution maps for the vast majority of plant species. This creates difficulties in re-assessing these species so as to measure genuine changes in conservation status, which must be observed under the same Red List criteria in order to be distinguished from an increase in the knowledge available for that species, and thus re-calculate the SRLI. However, the same specimen data identify precise localities where threatened species have previously been collected and can be used to model species ranges and to target fieldwork in order to test specimen-based range estimates and collect population data for SRLI plant species. Here, we outline a strategy for prioritizing fieldwork efforts in order to apply a wider range of IUCN Red List criteria to assessments of plant species, or any taxa with detailed locality or natural history specimen data, to produce a more robust estimation of the SRLI.


Author(s):  
Tobias Andermann ◽  
Søren Faurby ◽  
Robert Cooke ◽  
Daniele Silvestro ◽  
Alexandre Antonelli

AbstractThe ongoing environmental crisis poses an urgent need to forecast the who, where, and when of future species extinctions, as such information is crucial for targeting conservation efforts. Commonly, such forecasts are made based on conservation status assessments produced by the International Union for Conservation of Nature (IUCN). However, when researchers apply these IUCN conservation status data for predicting future extinctions, important information is often omitted, which can impact the accuracy of these predictions.Here we present a new approach and a software for simulating future extinctions based on IUCN conservation status information, which incorporates generation length information of individual species when modeling extinction risks. Additionally, we explicitly model future changes in conservation status for each species, based on status transition rates that we estimate from the IUCN assessment history of the last decades. Finally, we apply a Markov chain Monte Carlo algorithm to estimate extinction rates for each species, based on the simulated future extinctions. These estimates inherently incorporate the chances of conservation status changes and the generation length for each given species and are specific to the simulated time frame.We demonstrate the utility of our approach by estimating extinction rates for all bird species. Our average extinction risk estimate for the next 100 years across all birds is 6.98 × 10−4 extinctions per species-year, and we predict an expected biodiversity loss of between 669 to 738 bird species within that time frame. Further, the rate estimates between species sharing the same IUCN status show larger variation than the rates estimated with alternative approaches, which reflects expected differences in extinction risk among taxa of the same conservation status. Our method demonstrates the utility of applying species-specific information to the estimation of extinction rates, rather than assuming equal extinction risks for species assigned to the same conservation status.


Oryx ◽  
2021 ◽  
pp. 1-10
Author(s):  
Riley A. Pollom ◽  
Gina M. Ralph ◽  
Caroline M. Pollock ◽  
Amanda C.J. Vincent

Abstract Few marine taxa have been comprehensively assessed for their conservation status, despite heavy pressures from fishing, habitat degradation and climate change. Here we report on the first global assessment of extinction risk for 300 species of syngnathiform fishes known as of 2017, using the IUCN Red List criteria. This order of bony teleosts is dominated by seahorses, pipefishes and seadragons (family Syngnathidae). It also includes trumpetfishes (Aulostomidae), shrimpfishes (Centriscidae), cornetfishes (Fistulariidae) and ghost pipefishes (Solenostomidae). At least 6% are threatened, but data suggest a mid-point estimate of 7.9% and an upper bound of 38%. Most of the threatened species are seahorses (Hippocampus spp.: 14/42 species, with an additional 17 that are Data Deficient) or freshwater pipefishes of the genus Microphis (2/18 species, with seven additional that are Data Deficient). Two species are Near Threatened. Nearly one-third of syngnathiformes (97 species) are Data Deficient and could potentially be threatened, requiring further field research and evaluation. Most species (61%) were, however, evaluated as Least Concern. Primary threats to syngnathids are (1) overexploitation, primarily by non-selective fisheries, for which most assessments were determined by criterion A (Hippocampus) and/or (2) habitat loss and degradation, for which assessments were determined by criterion B (Microphis and some Hippocampus). Threatened species occurred in most regions but more are found in East and South-east Asia and in South African estuaries. Vital conservation action for syngnathids, including constraining fisheries, particularly non-selective extraction, and habitat protection and rehabilitation, will benefit many other aquatic species.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Beth A. Polidoro ◽  
Cristiane T. Elfes ◽  
Jonnell C. Sanciangco ◽  
Helen Pippard ◽  
Kent E. Carpenter

Given the economic and cultural dependence on the marine environment in Oceania and a rapidly expanding human population, many marine species populations are in decline and may be vulnerable to extinction from a number of local and regional threats. IUCN Red List assessments, a widely used system for quantifying threats to species and assessing species extinction risk, have been completed for 1190 marine species in Oceania to date, including all known species of corals, mangroves, seagrasses, sea snakes, marine mammals, sea birds, sea turtles, sharks, and rays present in Oceania, plus all species in five important perciform fish groups. Many of the species in these groups are threatened by the modification or destruction of coastal habitats, overfishing from direct or indirect exploitation, pollution, and other ecological or environmental changes associated with climate change. Spatial analyses of threatened species highlight priority areas for both site- and species-specific conservation action. Although increased knowledge and use of newly available IUCN Red List assessments for marine species can greatly improve conservation priorities for marine species in Oceania, many important fish groups are still in urgent need of assessment.


Sign in / Sign up

Export Citation Format

Share Document