A Mildly Non-linear System of Parabolic Differential Equations Arising from Mass Transfer with Chemical Reaction in Electrochemistry

1975 ◽  
Vol 15 (3) ◽  
pp. 373-383 ◽  
Author(s):  
T. JOSLIN ◽  
S. MCKEE
BIOMATH ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 1608111
Author(s):  
Ishwariya Raj ◽  
Princy Mercy Johnson ◽  
John J.H Miller ◽  
Valarmathi Sigamani

In this paper an initial value problem for a non-linear system of two singularly perturbed first order differential equations is considered on the interval (0,1].The components of the solution of this system exhibit initial layers at 0. A numerical method composed of a classical finite difference scheme on a piecewise uniform Shishkin mesh is suggested. This method is proved to be almost first order convergent in the maximum norm uniformly in the perturbation parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
U. S. Mahabaleshwar ◽  
T. Anusha ◽  
M. Hatami

AbstractThe steady magnetohydrodynamics (MHD) incompressible hybrid nanofluid flow and mass transfer due to porous stretching surface with quadratic velocity is investigated in the presence of mass transpiration and chemical reaction. The basic laminar boundary layer equations for momentum and mass transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The mass equation in the presence of chemical reaction is a differential equation with variable coefficients, which is transformed to a confluent hypergeometric differential equation. The mass transfer is analyzed for two different boundary conditions of concentration field that are prescribed surface concentration (PSC) and prescribed mass flux (PMF). The asymptotic solution of concentration filed for large Schmidt number is analyzed using Wentzel-Kramer-Brillouin (WKB) method. The parameters influence the flow are suction/injection, superlinear stretching parameter, porosity, magnetic parameter, hybrid nanofluid terms, Brinkman ratio and the effect of these are analysed using graphs.


1985 ◽  
Vol 31 (2) ◽  
pp. 293-307
Author(s):  
S.G. Hristova ◽  
D.D. Bainov

The paper justifies a method of bilateral approximations for finding the periodic solution of a non-linear system of differential equations with impulsive perturbations at fixed moments of time.


2011 ◽  
Vol 16 (1) ◽  
pp. 1-16 ◽  
Author(s):  
M. S. Alam ◽  
M. U. Ahammad

This paper deals with the effects of variable chemical reaction and variable electric conductivity on free convection and mass transfer flow of a viscous, incompressible and electrically conducting fluid over an inclined stretching sheet with variable heat and mass fluxes under the influence of Dufour and Soret effects. The non-linear boundary layer equations with boundary conditions are transferred into a system of non-linear ordinary differential equations using an established similarity transformation. These non-linear and locally-similar ordinary differential equations are solved numerically by applying Nachtsheim–Swigert shooting iteration technique with sixth-order Runge–Kutta integration scheme. Comparison with previously published work is obtained and excellent agreement is found. The effects of various parameters on the dimensionless velocity, temperature and concentration profiles as well as the local skin-friction coefficient, heat and mass transfer rate from the stretching sheet to the surrounding fluid are presented graphically and in tabulated form for a hydrogen-air mixture. The numerical results showed that chemical reaction parameter K, order of reaction n, Dufour number Df , Soret number Sr and heat (or mass) flux parameter r play a crucial role in the solutions.


Sign in / Sign up

Export Citation Format

Share Document