Mathematical Modelling of Radiative Heat Exchanges in Czochralski Crystal Pulling

1985 ◽  
Vol 35 (2) ◽  
pp. 205-222 ◽  
Author(s):  
ELLEN J. STERN
Solar Energy ◽  
2018 ◽  
Vol 176 ◽  
pp. 556-571 ◽  
Author(s):  
Concettina Marino ◽  
Antonino Nucara ◽  
Giorgia Peri ◽  
Matilde Pietrafesa ◽  
Gianfranco Rizzo

2017 ◽  
Vol 72 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Philippe Ben-Abdallah ◽  
Svend-Age Biehs

AbstractThe control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.


2014 ◽  
pp. 316-321
Author(s):  
Eusébio Z. E. Conceição ◽  
Manuel C. Gameiro Silva ◽  
Domingos X. Viegas

2020 ◽  
Vol 12 (14) ◽  
pp. 2214
Author(s):  
Xi Xu ◽  
Takashi Asawa ◽  
Hideki Kobayashi

Urban surface albedo is important for investigating urban surface–atmosphere radiative heat exchanges. For modeling surface energy balance (SEB) at local and neighborhood scales, ground or unmanned aerial vehicle (UAV)-based multispectral remote sensing (RS) can be used to obtain high-spatial-resolution multispectral information for both horizontal and vertical urban surfaces. The existing narrow-to-broadband (NTB) conversion models, developed for satellite/high-altitude observation and large homogeneous rural/vegetated/snow zones, may not be suitable for downscaling to the local and neighborhood scales or the urban complex texture. We developed three NTB models following published methodologies for three common UAV-based multispectral cameras according to Sample_D, a sample group of extensive spectral albedos of artificial urban surfaces, and evaluated their performance and sensitivities to solar conditions and surface material class. The proposed models were validated with independent samples (Sample_V). A model considering albedo physics was improved by multiplying different variables with respect to the camera (termed as “Model_phy_reg”), which initially proved to be the most accurate with a root mean square error of up to 0.02 for Sample_D and approximately 0.029 for Sample_V, meeting the required accuracy of total shortwave albedo for SEB modeling. The accuracy of Model_phy_reg was not much prone to the solar conditions.


2005 ◽  
Vol 10 (3) ◽  
pp. 257-274
Author(s):  
L. Hacia

Various problems of electrical engineering lead to mathematical models being difference, differential or integral equations. In this paper some mathematical models in certain problems of electrical engineering are presented. Our considerations are restricted to the radiative heat transfer and density theory (Fredholm integral equations). Respecting time in current density problems we get integro‐differential equations or generally Volterra‐Predholm integral equations (heat‐conduction theory). The new numerical method for these equations is analysed. Daugelio elektros inžinerijos problemu sprendimui tenka sudaryti matematinius modelius, kurie dažniausiai būna aprašomi skirtuminemis, diferencialinemis ar integralinemis lygtimis. Šiame darbe apžvelgiami kai kurie modeliai, skirti konkrečiu elektros inžinerijos uždaviniu sprendimui. Apsiribojama šilumos perdavimo proceso su spinduliuote modeliavimu ir tankio pasiskirstymo teorija (Predholmo integralines lygtys) .Ivedus laika, lygtys tankiui tampa integr‐diferencialinemis arba Volteros‐Predholmo integralinemis lygtimis. Darbe pateikiamas ir nagrinejamas naujas skaitinis tokiu lygčiu sprendimo metodas.


2012 ◽  
Author(s):  
Aleksandras Krylovas ◽  
Natalja Kosareva ◽  
Olga Navickiene

Sign in / Sign up

Export Citation Format

Share Document