L2-Gain-based controller design for linear systems with distributed input delay

2011 ◽  
Vol 28 (2) ◽  
pp. 225-237 ◽  
Author(s):  
G. Goebel ◽  
U. Munz ◽  
F. Allgower
Author(s):  
Sadek Belamfedel Alaoui ◽  
El Houssaine Tissir ◽  
Noreddine Chaibi ◽  
Fatima El Haoussi

Designing robust active queue management subjected to network imperfections is a challenging problem. Motivated by this topic, we addressed the problem of controller design for linear systems with variable delay and unsymmetrical constraints by the scaled small gain theorem. We designed two mechanisms: robust enhanced proportional derivative; and robust enhanced proportional derivative subjected to input saturation. Discussion of their practical implementations along with extensive comparisons by MATLAB and NS3 illustrate the improved performance and the enlargement of the domain of attraction regarding some literature results.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 949
Author(s):  
Keita Hara ◽  
Masaki Inoue

In this paper, we address the data-driven modeling of a nonlinear dynamical system while incorporating a priori information. The nonlinear system is described using the Koopman operator, which is a linear operator defined on a lifted infinite-dimensional state-space. Assuming that the L2 gain of the system is known, the data-driven finite-dimensional approximation of the operator while preserving information about the gain, namely L2 gain-preserving data-driven modeling, is formulated. Then, its computationally efficient solution method is presented. An application of the modeling method to feedback controller design is also presented. Aiming for robust stabilization using data-driven control under a poor training dataset, we address the following two modeling problems: (1) Forward modeling: the data-driven modeling is applied to the operating data of a plant system to derive the plant model; (2) Backward modeling: L2 gain-preserving data-driven modeling is applied to the same data to derive an inverse model of the plant system. Then, a feedback controller composed of the plant and inverse models is created based on internal model control, and it robustly stabilizes the plant system. A design demonstration of the data-driven controller is provided using a numerical experiment.


2011 ◽  
Vol 467-469 ◽  
pp. 1505-1510
Author(s):  
Dan Liu ◽  
Ni Hong Wang ◽  
Gui Ying Li

This paper proposes a new method that it uses the neural network to construct the solution of the Hamiltion-Jacobi inequality (HJ), and it carries on the optimization of the neural network weight using the genetic algorithm. This method causes the Lyapunov function to satisfy the HJ, avoides solving the HJ parital differential inequality, and overcomes the difficulty which the HJ parital differential inequality analysis. Beside this, it proposes a design method of a nonlinear state feedback L2-gain disturbance rejection controller based on HJ, and introduces general structure of L2-gain disturbance rejection controller in the form of neural network. The simulation demonstrates the design of controller is feasible and the closed-loop system ensures a finite gain between the disturbance and the output.


Author(s):  
Jin Zhu ◽  
Kai Xia ◽  
Geir E Dullerud

Abstract This paper investigates the quadratic optimal control problem for constrained Markov jump linear systems with incomplete mode transition probability matrix (MTPM). Considering original system mode is not accessible, observed mode is utilized for asynchronous controller design where mode observation conditional probability matrix (MOCPM), which characterizes the emission between original modes and observed modes is assumed to be partially known. An LMI optimization problem is formulated for such constrained hidden Markov jump linear systems with incomplete MTPM and MOCPM. Based on this, a feasible state-feedback controller can be designed with the application of free-connection weighting matrix method. The desired controller, dependent on observed mode, is an asynchronous one which can minimize the upper bound of quadratic cost and satisfy restrictions on system states and control variables. Furthermore, clustering observation where observed modes recast into several clusters, is explored for simplifying the computational complexity. Numerical examples are provided to illustrate the validity.


Sign in / Sign up

Export Citation Format

Share Document