Controllability of semilinear impulsive control systems with multiple time delays in control

2018 ◽  
Vol 36 (3) ◽  
pp. 869-899 ◽  
Author(s):  
Vijayakumar S Muni ◽  
Raju K George

Abstract In this article, we study the controllability of finite-dimensional dynamical control systems modelled by semilinear impulsive ordinary differential equations with multiple constant time delays in the control function. Initially, we recall a necessary and sufficient condition for the controllability of the corresponding linear system without impulses, with multiple constant time delays in the control function in terms of a matrix rank condition. Then under some sufficient conditions, we show that the actual system is also controllable for certain classes of non-linearities and impulse functions. We employ Schauder fixed-point theorem and Banach contraction mapping principle to establish the results. Our obtained results are applicable for both autonomous and non-autonomous systems. An example is given to illustrate the theoretical results.

2016 ◽  
Vol 26 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Adam Kowalewski

Abstract Various optimization problems for linear parabolic systems with multiple constant time delays are considered. In this paper, we consider an optimal distributed control problem for a linear parabolic system in which multiple constant time delays appear in the Neumann boundary condition. Sufficient conditions for the existence of a unique solution of the parabolic equation with the Neumann boundary condition involving multiple time delays are proved. The time horizon T is fixed. Making use of the Lions scheme [13], necessary and sufficient conditions of optimality for the Neumann problem with the quadratic cost function with pointwise observation of the state and constrained control are derived.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Lina Rong ◽  
Chengda Yu ◽  
Pengfei Guo ◽  
Hui Gao

The fault detection problem for a class of wireless networked control systems is investigated. A Bernoulli distributed parameter is introduced in modeling the system dynamics; moreover, multiple time delays arising in the communication are taken into account. The detection observer for tracking the system states is designed, which generates both the state errors and the output errors. By adopting the linear matrix inequality method, a sufficient condition for the stability of wireless networked control systems with stochastic uncertainties and multiple time delays is proposed, and the gain of the fault detection observer is obtained. Finally, an illustrated example is provided to show that the observer designed in this paper tracks the system states well when there is no fault in the systems; however, when fault happens, the observer residual signal rises rapidly and the fault can be quickly detected, which demonstrate the effectiveness of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xuling Wang ◽  
Xiaodi Li ◽  
Gani Tr. Stamov

This paper studies impulsive control systems with finite and infinite delays. Several stability criteria are established by employing the largest and smallest eigenvalue of matrix. Our sufficient conditions are less restrictive than the ones in the earlier literature. Moreover, it is shown that by using impulsive control, the delay systems can be stabilized even if it contains no stable matrix. Finally, some numerical examples are discussed to illustrate the theoretical results.


2003 ◽  
Vol 2003 (4) ◽  
pp. 137-152 ◽  
Author(s):  
D. Mehdi ◽  
E. K. Boukas

This paper deals with the class of uncertain systems with multiple time delays. The stability and stabilizability of this class of systems are considered. Their robustness are also studied when the norm-bounded uncertainties are considered. Linear matrix inequality (LMIs) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established to check if a system of this class is stable and/or is stabilizable. Some numerical examples are provided to show the usefulness of the proposed results.


Author(s):  
Y Fang

In this paper, the robust stability of uncertain linear systems with multiple time delays is studied. Sufficient conditions for robust stability of linear time delay systems with convex perturbations are obtained. From these sufficient conditions, a few results on robust stability of systems with other perturbations are derived. Some previously known sufficient conditions are generalized.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Song Zheng

The problem of projective synchronization of drive-response coupled dynamical network with delayed system nodes and multiple coupling time-varying delays is investigated. Some sufficient conditions are derived to ensure projective synchronization of drive-response coupled network under the impulsive controller by utilizing the stability analysis of the impulsive functional differential equation and comparison theory. Numerical simulations on coupled time delay Lorenz chaotic systems are exploited finally to illustrate the effectiveness of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document