scholarly journals An inexact regularized Newton framework with a worst-case iteration complexity of $ {\mathscr O}(\varepsilon^{-3/2}) $ for nonconvex optimization

2018 ◽  
Vol 39 (3) ◽  
pp. 1296-1327 ◽  
Author(s):  
Frank E Curtis ◽  
Daniel P Robinson ◽  
Mohammadreza Samadi

Abstract An algorithm for solving smooth nonconvex optimization problems is proposed that, in the worst-case, takes ${\mathscr O}(\varepsilon ^{-3/2})$ iterations to drive the norm of the gradient of the objective function below a prescribed positive real number $\varepsilon $ and can take ${\mathscr O}(\varepsilon ^{-3})$ iterations to drive the leftmost eigenvalue of the Hessian of the objective above $-\varepsilon $. The proposed algorithm is a general framework that covers a wide range of techniques including quadratically and cubically regularized Newton methods, such as the Adaptive Regularization using Cubics (arc) method and the recently proposed Trust-Region Algorithm with Contractions and Expansions (trace). The generality of our method is achieved through the introduction of generic conditions that each trial step is required to satisfy, which in particular allows for inexact regularized Newton steps to be used. These conditions center around a new subproblem that can be approximately solved to obtain trial steps that satisfy the conditions. A new instance of the framework, distinct from arc and trace, is described that may be viewed as a hybrid between quadratically and cubically regularized Newton methods. Numerical results demonstrate that our hybrid algorithm outperforms a cubically regularized Newton method.

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yunlong Lu ◽  
Weiwei Yang ◽  
Wenyu Li ◽  
Xiaowei Jiang ◽  
Yueting Yang

A new trust region method is presented, which combines nonmonotone line search technique, a self-adaptive update rule for the trust region radius, and the weighting technique for the ratio between the actual reduction and the predicted reduction. Under reasonable assumptions, the global convergence of the method is established for unconstrained nonconvex optimization. Numerical results show that the new method is efficient and robust for solving unconstrained optimization problems.


2021 ◽  
Author(s):  
Tianyi Liu ◽  
Zhehui Chen ◽  
Enlu Zhou ◽  
Tuo Zhao

Momentum stochastic gradient descent (MSGD) algorithm has been widely applied to many nonconvex optimization problems in machine learning (e.g., training deep neural networks, variational Bayesian inference, etc.). Despite its empirical success, there is still a lack of theoretical understanding of convergence properties of MSGD. To fill this gap, we propose to analyze the algorithmic behavior of MSGD by diffusion approximations for nonconvex optimization problems with strict saddle points and isolated local optima. Our study shows that the momentum helps escape from saddle points but hurts the convergence within the neighborhood of optima (if without the step size annealing or momentum annealing). Our theoretical discovery partially corroborates the empirical success of MSGD in training deep neural networks.


2011 ◽  
Vol 52-54 ◽  
pp. 920-925
Author(s):  
Qing Hua Zhou ◽  
Yan Geng ◽  
Ya Rui Zhang ◽  
Feng Xia Xu

The derivative free trust region algorithm was considered for solving the unconstrained optimization problems. This paper introduces a novel methodology that modified the center of the trust region in order to improve the search region. The main idea is parameterizing the center of the trust region based on the ideas of multi-directional search and simplex search algorithms. The scope of the new region was so expanded by introducing a parameter as to we can find a better descent directions. Experimental results reveal that the new method is more effective than the classic trust region method on the testing problems.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Zhensheng Yu ◽  
Jinhong Yu

We present a nonmonotone trust region algorithm for nonlinear equality constrained optimization problems. In our algorithm, we use the average of the successive penalty function values to rectify the ratio of predicted reduction and the actual reduction. Compared with the existing nonmonotone trust region methods, our method is independent of the nonmonotone parameter. We establish the global convergence of the proposed algorithm and give the numerical tests to show the efficiency of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document