Computation of Quantum Cohomology From Fukaya Categories
Keyword(s):
Blow Up
◽
Abstract Assume the existence of a Fukaya category $\textrm{Fuk}(X)$ of a compact symplectic manifold $X$ with some expected properties. In this paper, we show $\mathscr{A} \subset \textrm{Fuk}(X)$ split generates a summand $\textrm{Fuk}(X)_e \subset \textrm{Fuk}(X)$ corresponding to an idempotent $e \in QH^{\bullet }(X)$ if the Mukai pairing of $\mathscr{A}$ is perfect. Moreover, we show $HH^{\bullet }(\mathscr{A}) \cong QH^{\bullet }(X) e$. As an application, we compute the quantum cohomology and the Fukaya category of a blow-up of $\mathbb{C} P^2$ at four points with a monotone symplectic structure.
2015 ◽
Vol 12
(03)
◽
pp. 1550030
2016 ◽
Vol 13
(02)
◽
pp. 1650007
2012 ◽
Vol 23
(10)
◽
pp. 1250102
◽
2009 ◽
Vol 11
(06)
◽
pp. 895-936
◽
2020 ◽
Vol 13
(4)
◽
pp. 89-115
1988 ◽
Vol 24
(1)
◽
pp. 141-168
◽
Keyword(s):
2015 ◽
Vol 12
(02)
◽
pp. 1550021