scholarly journals Contact blow up and cylindrical contact homology of toric contact manifolds of Reeb type

2017 ◽  
Vol 102 (116) ◽  
pp. 61-71
Author(s):  
Aleksandra Marinkovic

Let (V,?) be a toric contact manifold of Reeb type that is a prequantization of a toric symplectic manifold (M,?). A contact blow up of (V,?) is the prequantization of a symplectic blow up of (M,?). Thus, a contact blow up of (V,?) is a new toric contact manifold of Reeb type. In some special cases we are able to compute the cylindrical contact homology for the contact blowup using only the cylindrical contact homology of the contact manifold we started with.

2011 ◽  
Vol 148 (1) ◽  
pp. 304-334 ◽  
Author(s):  
Miguel Abreu ◽  
Leonardo Macarini

AbstractIn this paper we show that any good toric contact manifold has a well-defined cylindrical contact homology, and describe how it can be combinatorially computed from the associated moment cone. As an application, we compute the cylindrical contact homology of a particularly nice family of examples that appear in the work of Gauntlett et al. on Sasaki–Einstein metrics. We show in particular that these give rise to a new infinite family of non-equivalent contact structures on S2×S3 in the unique homotopy class of almost contact structures with vanishing first Chern class.


Author(s):  
MIGUEL ABREU ◽  
JEAN GUTT ◽  
JUNGSOO KANG ◽  
LEONARDO MACARINI

Abstract We prove that every non-degenerate Reeb flow on a closed contact manifold M admitting a strong symplectic filling W with vanishing first Chern class carries at least two geometrically distinct closed orbits provided that the positive equivariant symplectic homology of W satisfies a mild condition. Under further assumptions, we establish the existence of two geometrically distinct closed orbits on any contact finite quotient of M. Several examples of such contact manifolds are provided, like displaceable ones, unit cosphere bundles, prequantisation circle bundles, Brieskorn spheres and toric contact manifolds. We also show that this condition on the equivariant symplectic homology is preserved by boundary connected sums of Liouville domains. As a byproduct of one of our applications, we prove a sort of Lusternik–Fet theorem for Reeb flows on the unit cosphere bundle of not rationally aspherical manifolds satisfying suitable additional assumptions.


2018 ◽  
Vol 2020 (8) ◽  
pp. 2436-2467 ◽  
Author(s):  
Vestislav Apostolov ◽  
David M J Calderbank ◽  
Paul Gauduchon ◽  
Eveline Legendre

Abstract We define toric contact manifolds in arbitrary codimension and give a description of such manifolds in terms of a kind of labelled polytope embedded into a grassmannian, analogous to the Delzant polytope of a toric symplectic manifold.


2018 ◽  
Vol 2020 (14) ◽  
pp. 4465-4495 ◽  
Author(s):  
Miguel Abreu ◽  
Leonardo Macarini

Abstract We prove that the mean Euler characteristic of a Gorenstein toric contact manifold, that is, a good toric contact manifold with zero 1st Chern class, is equal to half the normalized volume of the corresponding toric diagram and give some applications. A particularly interesting one, obtained using a result of Batyrev and Dais, is the following: twice the mean Euler characteristic of a Gorenstein toric contact manifold is equal to the Euler characteristic of any crepant toric symplectic filling, that is, any toric symplectic filling with zero 1st Chern class.


Author(s):  
Pierre Albin ◽  
Hadrian Quan

Abstract We study the behavior of the heat kernel of the Hodge Laplacian on a contact manifold endowed with a family of Riemannian metrics that blow-up the directions transverse to the contact distribution. We apply this to analyze the behavior of global spectral invariants such as the $\eta $-invariant and the determinant of the Laplacian. In particular, we prove that contact versions of the relative $\eta $-invariant and the relative analytic torsion are equal to their Riemannian analogues and hence topological.


2013 ◽  
Vol 10 (05) ◽  
pp. 1350012 ◽  
Author(s):  
YONG SEUNG CHO

We extend the notion of a pseudoholomorphic map in a symplectic manifold to the one of an almost coholomorphic map on a contact manifold M of an odd dimension. We study the moduli space of stable almost coholomorphic maps that represent a two-dimensional integral homology class of M, Gromov–Witten type invariants, quantum type products and quantum type cohomologies.


2019 ◽  
Vol 11 (01) ◽  
pp. 53-108 ◽  
Author(s):  
Marcelo R. R. Alves

In this paper we study the growth rate of a version of Legendrian contact homology, which we call strip Legendrian contact homology, in 3-dimensional contact manifolds and its relation to the topological entropy of Reeb flows. We show that: if for a pair of Legendrian knots in a contact 3-manifold [Formula: see text] the strip Legendrian contact homology is defined and has exponential homotopical growth with respect to the action, then every Reeb flow on [Formula: see text] has positive topological entropy. This has the following dynamical consequence: for all Reeb flows (even degenerate ones) on [Formula: see text] the number of hyperbolic periodic orbits grows exponentially with respect to the period. We show that for an infinite family of 3-manifolds, infinitely many different contact structures exist that possess a pair of Legendrian knots for which the strip Legendrian contact homology has exponential growth rate.


Author(s):  
Fumihiko Sanda

Abstract Assume the existence of a Fukaya category $\textrm{Fuk}(X)$ of a compact symplectic manifold $X$ with some expected properties. In this paper, we show $\mathscr{A} \subset \textrm{Fuk}(X)$ split generates a summand $\textrm{Fuk}(X)_e \subset \textrm{Fuk}(X)$ corresponding to an idempotent $e \in QH^{\bullet }(X)$ if the Mukai pairing of $\mathscr{A}$ is perfect. Moreover, we show $HH^{\bullet }(\mathscr{A}) \cong QH^{\bullet }(X) e$. As an application, we compute the quantum cohomology and the Fukaya category of a blow-up of $\mathbb{C} P^2$ at four points with a monotone symplectic structure.


2013 ◽  
Vol 35 (2) ◽  
pp. 615-672
Author(s):  
ANNE VAUGON

AbstractOn a three-dimensional contact manifold with boundary, a bypass attachment is an elementary change of the contact structure consisting in the attachment of a thickened half-disc with a prescribed contact structure along an arc on the boundary. We give a model bypass attachment in which we describe the periodic orbits of the Reeb vector field created by the bypass attachment in terms of Reeb chords of the attachment arc. As an application, we compute the contact homology of a product neighbourhood of a convex surface after a bypass attachment, and the contact homology of some contact structures on solid tori.


Sign in / Sign up

Export Citation Format

Share Document