Erratum: Energy Minimization, Periodic Sets, and Spherical Designs

Author(s):  
Renaud Coulangeon ◽  
Achill Schürmann

Abstract In [ 3] we considered energy minimization of pair potentials among periodic sets of a fixed-point density. For a large class of potentials we presented sufficient conditions for a point lattice to give a local optimum among periodic sets. We hereby, in particular, derived a local version of Cohn and Kumar’s conjecture [ 1, Conjecture 9.4] by which the hexagonal lattice $\textsf{A}_2$, the root lattice $\textsf{E}_8$, and the Leech lattice are globally universally optimal. Latter conjecture has recently been proved for $\textsf{E}_8$ and the Leech lattice by Cohn et al. [ 2].

1996 ◽  
Vol 52 (1) ◽  
pp. 165-183 ◽  
Author(s):  
A. M. Chaka ◽  
R. Zaniewski ◽  
W. Youngs ◽  
C. Tessier ◽  
G. Klopman

This paper describes a novel method for predicting the crystal structure of organic molecular materials which employs a series of successive approximations to focus on structures of high probability, without resorting to a brute force search and energy minimization of all possible structures. The problem of multiple local minima is overcome by assuming that the crystal structure is closely packed, thereby eliminating 217 of the 230 possible space groups. Configurations within the 13 remaining space groups are searched by rotating the reference molecule about Cartesian axes in rotational increments of 15°. Initial energy minimization is performed using (6–12) Lennard–Jones pair potentials to produce a set of closely packed structures. The structures are then refined with the introduction of a Coulombic potential calculated using molecular multipole moments. This method has successfully located local minima which correspond to the observed crystal structures of several saturated and unsaturated hydro-C atoms with no a priori information provided. For large polycyclic aromatic hydrocarbons, additional refinements of the energy calculations are required to distinguish the experimental structure from a small number of closely packed structures. Our methodology for a priori crystal structure prediction represents the most efficient algorithm presented to date, in a field where the first successes have only been described within the past year and have been few and far between. Since our algorithm is capable of locating a large number of reasonable structures with similar energy in a short period of time, and is more likely to locate a minimum corresponding to the experimental structure, our program provides a superior framework to determine the level of theory required to calculate the intermolecular potential. For all but highly asymmetric hydrocarbons, however, distinguishing the observed structure from a large number of highly probable structures requires more rigorously calculated intermolecular interactions than pair potentials, plus an ad hoc electrostatic potential, and is thus beyond the scope of this paper. All calculations were performed on the Ohio Supercomputer Center's Cray Y-MP.


1995 ◽  
Vol 408 ◽  
Author(s):  
L. L. Boyer

AbstractSimple pair potentials are constructed which give hexagonal- or squarelattice ground states in two dimensions, depending on the value of a single parameter controlling the width of the potential well. Molecular dynamics calculations for free clusters of a few hundred particles are used to examine a structural transition from the square lattice, at low temperatures, to the hexagonal lattice at high temperatures. Another structural transition (melting) is identified by the onset of diffusion. The melting temperature is found to be a minimum near the point where the barrier between the two structures, as a function of lattice strain, is also a minimum.


2011 ◽  
Vol 2012 (4) ◽  
pp. 829-848 ◽  
Author(s):  
Renaud Coulangeon ◽  
Achill Schürmann

2018 ◽  
Vol 32 (15) ◽  
pp. 1850166 ◽  
Author(s):  
Lixin Jiao ◽  
Lidong Wang ◽  
Fengquan Li ◽  
Heng Liu

Consider the surjective continuous map [Formula: see text]: [Formula: see text] defined on a compact metric space X. Let [Formula: see text] be the space of all non-empty compact subsets of X equipped with the Hausdorff metric and define [Formula: see text]: [Formula: see text] by [Formula: see text] for any [Formula: see text]. In this paper, we introduce several stronger versions of sensitivities, such as multi-sensitivity with respect to a vector, [Formula: see text]-sensitivity, strong multi-sensitivity. We obtain some basic properties of the concepts of these sensitivities and discuss the relationships with other sensitivities for continuous self-map on [0,[Formula: see text]1]. Some sufficient conditions for a dynamical system to be [Formula: see text]-sensitive are presented. Also, it is shown that the strong multi-sensitivity of f implies that [Formula: see text] is [Formula: see text]-sensitive. In turn, the [Formula: see text]-sensitivity of [Formula: see text] implies that [Formula: see text] is [Formula: see text]-sensitive. In particular, it is proved that if [Formula: see text] is a multi-transitive map with dense periodic sets, then f is [Formula: see text]-sensitive. Finally, we give a multi-sensitive example which is not [Formula: see text]-sensitive.


Author(s):  
Maher Nouiehed ◽  
Meisam Razaviyayn

With the increasing popularity of nonconvex deep models, developing a unifying theory for studying the optimization problems that arise from training these models becomes very significant. Toward this end, we present in this paper a unifying landscape analysis framework that can be used when the training objective function is the composite of simple functions. Using the local openness property of the underlying training models, we provide simple sufficient conditions under which any local optimum of the resulting optimization problem is globally optimal. We first completely characterize the local openness of the symmetric and nonsymmetric matrix multiplication mapping. Then we use our characterization to (1) provide a simple proof for the classical result of Burer-Monteiro and extend it to noncontinuous loss functions; (2) show that every local optimum of two-layer linear networks is globally optimal. Unlike many existing results in the literature, our result requires no assumption on the target data matrix [Formula: see text], and input data matrix [Formula: see text]; (3) develop a complete characterization of the local/global optima equivalence of multilayer linear neural networks (we provide various counterexamples to show the necessity of each of our assumptions); and (4) show global/local optima equivalence of overparameterized nonlinear deep models having a certain pyramidal structure. In contrast to existing works, our result requires no assumption on the differentiability of the activation functions and can go beyond “full-rank” cases.


2007 ◽  
Vol 44 (02) ◽  
pp. 492-505
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


Sign in / Sign up

Export Citation Format

Share Document