scholarly journals Poisson Λ-brackets for Differential–Difference Equations

2018 ◽  
Vol 2020 (13) ◽  
pp. 4144-4190 ◽  
Author(s):  
Alberto De Sole ◽  
Victor G Kac ◽  
Daniele Valeri ◽  
Minoru Wakimoto

Abstract We introduce the notion of a multiplicative Poisson $\lambda$-bracket, which plays the same role in the theory of Hamiltonian differential–difference equations as the usual Poisson $\lambda$-bracket plays in the theory of Hamiltonian partial differential equations (PDE). We classify multiplicative Poisson $\lambda$-brackets in one difference variable up to order 5. As an example, we demonstrate how to apply the Lenard–Magri scheme to a compatible pair of multiplicative Poisson $\lambda$-brackets of order 1 and 2, to establish integrability of the Volterra chain.

Author(s):  
Renfrey B. Potts

AbstractOrdinary difference equations (OΔE's), mostly of order two and three, are derived for the trigonometric, Jacobian elliptic, and hyperbolic functions. The results are used to derive partial difference equations (PΔE's) for simple solutions of the wave equation and three nonlinear evolutionary partial differential equations.


2000 ◽  
Vol 43 (3) ◽  
pp. 485-510 ◽  
Author(s):  
Derek W. Holtby

AbstractThe purpose of this work is to establish a priori C2, α estimates for mesh function solutions of nonlinear positive difference equations in fully nonlinear form on a uniform mesh, where the fully nonlinear finite-difference operator ℱh is concave in the second-order variables. The estimate is an analogue of the corresponding estimate for solutions of concave fully nonlinear elliptic partial differential equations. We deal here with the special case that the operator does not depend explicitly upon the independent variables. We do this by discretizing the approach of Evans for fully nonlinear elliptic partial differential equations using the discrete linear theory of Kuo and Trudinger. The result in this special case forms the basis for a more general result in part II. We also derive the discrete interpolation inequalities needed to obtain estimates for the interior C2, α semi-norm in terms of the C0 norm.


1969 ◽  
Vol 9 (02) ◽  
pp. 255-269 ◽  
Author(s):  
M. Sheffield

Abstract This paper presents a technique for predicting the flow, of oil, gas and water through a petroleum reservoir. Gravitational, viscous and capillary forces are considered, and all fluids are considered to be slightly compressible. Some theoretical work concerning the fluid flow in one-, two- and three-space dimensions is given along with example performance predictions in one- and two-space dimensions. predictions in one- and two-space dimensions Introduction Since the introduction of high speed computing equipment one of the goals of reservoir engineering research has been to develop more accurate methods of describing fluid movement through underground reservoirs. Various mathematical methods have been developed or used by reservoir engineers to predict reservoir performance. The work reported in this paper extends previously published work on three-phase fluid flow (1) by including a rigorous treatment of capillary forces and (2) by showing certain theoretical mathematical results proving that these equations can be approximated by certain numerical techniques and that a unique solution exists. Discussion The method of predicting three-phase compressible fluid flow in a reservoir can be summarized briefly by the following steps. 1.The reservoir, or a section of a reservoir, is characterized by a series of mesh points with varying rock and fluid properties simulated at each mesh point. point. 2.Three partial differential equations are written to describe the movement at any point in the reservoir of each of the three compressible fluids. All forces influencing movement are considered in the equations. 3. At each mesh point, the partial differential equations are replaced by a system of analogous difference equations. 4. A numerical technique is used to solve the resulting system of difference equations. Capillary forces have been included in two-phase flow calculations. The literature, however, does not contain examples of prediction techniques for three-phase flow that include capillary forces. Where capillary Races are considered, each of the three partial differential equations previously discussed has a different dependent variable, namely pressure in one of the three fluid phases. Therefore, pressure in one of the three fluid phases. Therefore, three difference equations must be solved at each point in the reservoir. Where large systems of point in the reservoir. Where large systems of equations must be solved simultaneously, an engineer might question whether a unique solution to this system of equations actually exists and, if so, what numerical techniques may be used to obtain a good approximation to the solution. It is shown in the Appendix that a unique solution to the three-phase flow problem, as formulated, always exists. It is also shown that several methods may be used to obtain a good approximation to the solution. The partial differential equations and difference equations partial differential equations and difference equations used are shown in the Appendix. Matrix notation has been used in developing the mathematical results. Two sample problems were solved on a CDC 1604. They illustrate the type of problems that can be solved using a three-phase prediction technique. SAMPLE ONE-DIMENSIONAL RESERVOIR PERFORMANCE PREDICTION A hypothetical reservoir was studied to provide an example of a one-dimensional problem that can be solved. Of the several techniques available, the direct method A solution as shown in the Appendix was used. The reservoir section studied was a truncated, wedge-shaped section, 2,400 ft long, with a 6' dip. (A schematic is shown in Fig. 1.) This section was represented by 49 mesh points, uniformly spaced at 50-ft intervals. The upper end of the wedge was 2 ft wide, and the lower end was 6 ft wide. SPEJ P. 255


2001 ◽  
Vol 44 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Derek W. Holtby

AbstractThe purpose of this work is to establish a priori $C^{2,\alpha}$ estimates for mesh function solutions of nonlinear difference equations of positive type in fully nonlinear form on a uniform mesh, where the fully nonlinear finite difference operator $\F$ is concave in the second-order variables. The estimate is an analogue of the corresponding estimate for solutions of concave fully nonlinear elliptic partial differential equations. We use the results for the special case that the operator does not depend explicitly upon the independent variables (the so-called frozen case) established in part I to approach the general case of explicit dependence upon the independent variables. We make our approach for the diagonal case via a discretization of the approach of Safonov for fully nonlinear elliptic partial differential equations using the discrete linear theory of Kuo and Trudinger and an especially agreeable mesh function interpolant provided by Kunkle. We generalize to non-diagonal operators using an idea which, to the author’s knowledge, is novel. In this paper we establish the desired Hölder estimate in the large, that is, on the entire mesh $n$-plane. In a subsequent paper a truly interior estimate will be established in a mesh $n$-box.AMS 2000 Mathematics subject classification: Primary 35J60; 35J15; 39A12. Secondary 39A70; 39A10; 65N06; 65N22; 65N12


Sign in / Sign up

Export Citation Format

Share Document