scholarly journals Associations Between Genetically Predicted Protein Levels and COVID-19 Severity

2020 ◽  
Vol 223 (1) ◽  
pp. 19-22
Author(s):  
Jingjing Zhu ◽  
Chong Wu ◽  
Lang Wu

Abstract It is critical to identify potential causal targets for SARS-CoV-2, which may guide drug repurposing options. We assessed the associations between genetically predicted protein levels and COVID-19 severity. Leveraging data from the COVID-19 Host Genetics Initiative comparing 6492 hospitalized COVID-19 patients and 1 012 809 controls, we identified 18 proteins with genetically predicted levels to be associated with COVID-19 severity at a false discovery rate of <0.05, including 12 that showed an association even after Bonferroni correction. Of the 18 proteins, 6 showed positive associations and 12 showed inverse associations. In conclusion, we identified 18 candidate proteins for COVID-19 severity.

2019 ◽  
Author(s):  
Yohann Couté ◽  
Christophe Bruley ◽  
Thomas Burger

AbstractIn bottom-up discovery proteomics, target-decoy competition (TDC) is the most popular method for false discovery rate (FDR) control. Despite unquestionable statistical foundations, this method has drawbacks, including its hitherto unknown intrinsic lack of stability vis-à-vis practical conditions of application. Although some consequences of this instability have already been empirically described, they may have been misinter-preted. This article provides evidence that TDC has become less reliable as the accuracy of modern mass spectrometers improved. We therefore propose to replace TDC by a totally different method to control the FDR at spectrum, peptide and protein levels, while benefiting from the theoretical guarantees of the Benjamini-Hochberg framework. As this method is simpler to use, faster to compute and more stable than TDC, we argue that it is better adapted to the standardization and throughput constraints of current proteomic platforms.


2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yonghui Wu ◽  
Jeremy L. Warner ◽  
Liwei Wang ◽  
Min Jiang ◽  
Jun Xu ◽  
...  

PURPOSEDrug development is becoming increasingly expensive and time consuming. Drug repurposing is one potential solution to accelerate drug discovery. However, limited research exists on the use of electronic health record (EHR) data for drug repurposing, and most published studies have been conducted in a hypothesis-driven manner that requires a predefined hypothesis about drugs and new indications. Whether EHRs can be used to detect drug repurposing signals is not clear. We want to demonstrate the feasibility of mining large, longitudinal EHRs for drug repurposing by detecting candidate noncancer drugs that can potentially be used for the treatment of cancer.PATIENTS AND METHODSBy linking cancer registry data to EHRs, we identified 43,310 patients with cancer treated at Vanderbilt University Medical Center (VUMC) and 98,366 treated at the Mayo Clinic. We assessed the effect of 146 noncancer drugs on cancer survival using VUMC EHR data and sought to replicate significant associations (false discovery rate < .1) using the identical approach with Mayo Clinic EHR data. To evaluate replicated signals further, we reviewed the biomedical literature and clinical trials on cancers for corroborating evidence.RESULTSWe identified 22 drugs from six drug classes (statins, proton pump inhibitors, angiotensin-converting enzyme inhibitors, β-blockers, nonsteroidal anti-inflammatory drugs, and α-1 blockers) associated with improved overall cancer survival (false discovery rate < .1) from VUMC; nine of the 22 drug associations were replicated at the Mayo Clinic. Literature and cancer clinical trial evaluations also showed very strong evidence to support the repurposing signals from EHRs.CONCLUSIONMining of EHRs for drug exposure–mediated survival signals is feasible and identifies potential candidates for antineoplastic repurposing. This study sets up a new model of mining EHRs for drug repurposing signals.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 829-833
Author(s):  
Chiara Sabatti ◽  
Susan Service ◽  
Nelson Freimer

Abstract We explore the implications of the false discovery rate (FDR) controlling procedure in disease gene mapping. With the aid of simulations, we show how, under models commonly used, the simple step-down procedure introduced by Benjamini and Hochberg controls the FDR for the dependent tests on which linkage and association genome screens are based. This adaptive multiple comparison procedure may offer an important tool for mapping susceptibility genes for complex diseases.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii71-iii71
Author(s):  
T Kaisman-Elbaz ◽  
Y Elbaz ◽  
V Merkin ◽  
L Dym ◽  
A Noy ◽  
...  

Abstract BACKGROUND Glioblastoma is known for its dismal prognosis though its dependency on patients’ readily available RBCs parameters defining the patient’s anemic status such as hemoglobin level and Red blood cells distribution Width (RDW) is not fully established. Several works demonstrated a connection between low hemoglobin level or high RDW values to overall glioblastoma patient’s survival, but in other works, a clear connection was not found. This study addresses this unclarity. MATERIAL AND METHODS In this work, 170 glioblastoma patients, diagnosed and treated in Soroka University Medical Center (SUMC) in the last 12 years were retrospectively inspected for their survival dependency on pre-operative RBCs parameters using multivariate analysis followed by false discovery rate procedure due to the multiple hypothesis testing. A survival stratification tree and Kaplan-Meier survival curves that indicate the patient’s prognosis according to these parameters were prepared. RESULTS Beside KPS>70 and tumor resection supplemented by oncological treatment, age<70 (HR=0.4, 95% CI 0.24–0.65), low hemoglobin level (HR=1.79, 95% CI 1.06–2.99) and RDW<14% (HR=0.57, 95% CI 0.37–0.88) were found to be prognostic to patients’ overall survival in multivariate analysis, accounting for false discovery rate of less than 5%. CONCLUSION A survival stratification highlighted a non-anemic subgroup of nearly 30% of the cohort’s patients whose median overall survival was 21.1 months (95% CI 16.2–27.2) - higher than the average Stupp protocol overall median survival of about 15 months. A discussion on the beneficial or detrimental effect of RBCs parameters on glioblastoma prognosis and its possible causes is given.


Sign in / Sign up

Export Citation Format

Share Document