scholarly journals Glia maturation factor produced by thymic epithelial cells plays a role in T cell differentiation in the thymic microenvironment

2003 ◽  
Vol 15 (5) ◽  
pp. 557-564 ◽  
Author(s):  
M. Utsuyama
2005 ◽  
Vol 47 (3) ◽  
pp. 292-302 ◽  
Author(s):  
H Yamazaki ◽  
H Tateyama ◽  
K Asai ◽  
I Fukai ◽  
Y Fujii ◽  
...  

Author(s):  
H. Alasam

The possibility that intrathymic T-cell differentiation involves stem cell-lymphoid interactions in embryos led us to study the ultrastructure of epithelial cell in normal embryonic thymus. Studies in adult thymus showed that it produces several peptides that induce T-cell differentiation. Several of them have been chemically characterized, such as thymosin α 1, thymopoietin, thymic humoral factor or the serum thymic factor. It was suggested that most of these factors are secreted by populations of A and B-epithelial cells.Embryonic materials were obtained from inbred matings of Swiss Albino mice. Thymuses were disected from embryos 17 days old and prepared for transmission electron microscopy. Our studies showed that embryonic thymus at this stage contains undifferentiated and differentiated epithelial cells, large lymphoblasts, medium and few small lymphocytes (Fig. 5). No differences were found between cortical and medullary epithelial cells, in contrast to the findings of Van Vliet et al,. Epithelial cells were mostly of the A-type with low electron density in both cytoplasm and nucleus. However few B-type with high electron density were also found (Fig. 7).


1975 ◽  
Vol 249 (1 Thymus Factor) ◽  
pp. 492-498 ◽  
Author(s):  
Samuel D. Waksal ◽  
Irun R. Cohen ◽  
Harlan W. Waksal ◽  
Hartmut Wekerle ◽  
Ronald L. St. Pierre ◽  
...  

Blood ◽  
2013 ◽  
Vol 121 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Moutih Rafei ◽  
Alexandre Rouette ◽  
Sylvie Brochu ◽  
Juan Ruiz Vanegas ◽  
Claude Perreault

Abstract The primary consequence of positive selection is to render thymocytes responsive to cytokines and chemokines expressed in the thymic medulla. In the present study, our main objective was to discover which cytokines could support the differentiation of positively selected thymocytes. To this end, we have developed an in vitro model suitable for high-throughput analyses of positive selection and CD8 T-cell differentiation. The model involves coculture of TCRhiCD5intCD69− double-positive (DP) thymocytes with peptide-pulsed OP9 cells and γc-cytokines. We report that IL-4, IL-7, and IL-21 have nonredundant effects on positively selected DP thymocytes. IL-7 signaling phosphorylates STAT5 and ERK; induces Foxo1, Klf2, and S1pr1; and supports the differentiation of classic CD8 T cells. IL-4 activates STAT6 and ERK and supports the differentiation of CD8intPD-L1hiCD44hiEOMES+ innate CD8 T cells. IL-21 is produced by thymic epithelial cells and the IL-21 receptor-α is strongly induced on DP thymocytes undergoing positive selection. IL-21 signaling phosphorylates STAT3 and STAT5, but not ERK, and does not support CD8 T-cell differentiation. However, IL-21 has a unique ability to up-regulate BCL-6, expand DP thymocytes undergoing positive selection, and increase the production of mature T cells. Our data suggest that injection of recombinant IL-21 might enhance thymic output in subjects with age- or disease-related thymic atrophy.


2007 ◽  
Vol 204 (3) ◽  
pp. 475-480 ◽  
Author(s):  
Adrian Liston ◽  
Andrew G. Farr ◽  
Zhibin Chen ◽  
Christophe Benoist ◽  
Diane Mathis ◽  
...  

Foxp3 is essential for the commitment of differentiating thymocytes to the regulatory CD4+ T (T reg) cell lineage. In humans and mice with a genetic Foxp3 deficiency, absence of this critical T reg cell population was suggested to be responsible for the severe autoimmune lesions. Recently, it has been proposed that in addition to T reg cells, Foxp3 is also expressed in thymic epithelial cells where it is involved in regulation of early thymocyte differentiation and is required to prevent autoimmunity. Here, we used genetic tools to demonstrate that the thymic epithelium does not express Foxp3. Furthermore, we formally showed that genetic abatement of Foxp3 in the hematopoietic compartment, i.e. in T cells, is both necessary and sufficient to induce the autoimmune lesions associated with Foxp3 loss. In contrast, deletion of a conditional Foxp3 allele in thymic epithelial cells did not result in detectable changes in thymocyte differentiation or pathology. Therefore, in mice the only known role for Foxp3 remains promotion of T reg cell differentiation within the T cell lineage, whereas there is no role for Foxp3 in thymic epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document