scholarly journals Body and Pectoral Fin Kinematics During Routine Yaw Turning in Bonnethead Sharks (Sphyrna tiburo)

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
S L Hoffmann ◽  
M E Porter

Synopsis Maneuvering is a crucial locomotor strategy among aquatic vertebrates, common in routine swimming, feeding, and escape responses. Combinations of whole body and fin movements generate an imbalance of forces resulting in deviation from an initial path. Sharks have elongate bodies that bend substantially and, in combination with pectoral fin rotation, play a role in yaw (horizontal) turning, but previous studies focus primarily on maximal turning performance rather than routine maneuvers. Routine maneuvering is largely understudied in fish swimming, despite observations that moderate maneuvering is much more common than the extreme behaviors commonly described in the literature. In this study, we target routine maneuvering in the bonnethead shark, Sphyrna tiburo. We use video reconstruction of moving morphology to describe three-dimensional pectoral fin rotation about three axes to compare to those previously described on yaw turning by the Pacific spiny dogfish. We quantify kinematic variables to understand the impacts of body and fin movements on routine turning performance. We also describe the anatomy of bonnethead pectoral fins and use muscle stimulation to confirm functional hypotheses about their role in actuating the fin. The turning performance metrics we describe for bonnethead sharks are comparable to other routine maneuvers described for the Pacific spiny dogfish and manta rays. These turns were substantially less agile and maneuverable than previously documented for other sharks, which we hypothesize results from the comparison of routine turning to maneuvering under stimulated conditions. We suggest that these results highlight the importance of considering routine maneuvering in future studies. Cinemática del Cuerpo y de las Aletas Pectorales Durante el giro en el eje Vertical en la Cabeza del Tiburón Pala (Sphyrna tiburo) (Body and Pectoral Fin Kinematics During Routine Yaw Turning in Bonnethead Sharks [Sphyrna tiburo])

Biology Open ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. bio037291 ◽  
Author(s):  
Sarah L. Hoffmann ◽  
Cassandra M. Donatelli ◽  
Samantha C. Leigh ◽  
Elizabeth L. Brainerd ◽  
Marianne E. Porter

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zehua Zheng ◽  
Kazuhiro Kawakami ◽  
Dingkun Zhang ◽  
Lumi Negishi ◽  
Mohamed Abomosallam ◽  
...  

AbstractThe Pacific oyster, Crassostrea gigas, is a traditional food worldwide. The soft body of the oyster can easily accumulate heavy metals such as cadmium (Cd). To clarify the molecular mechanism of Cd accumulation in the viscera of C. gigas, we identified Cd-binding proteins. 5,10,15,20-Tetraphenyl-21H,23H-porphinetetrasulfonic acid, disulfuric acid, tetrahydrate, and Cd-binding competition experiments using immobilized metal ion affinity chromatography revealed the binding of water-soluble high molecular weight proteins to Cd, including C. gigas protein disulfide isomerase (cgPDI). Liquid chromatography–tandem mass spectrometry (LC–MS/MS) analyses revealed two CGHC motifs in cgPDI. The binding between Cd and rcgPDI was confirmed through a Cd-binding experiment using the TPPS method. Isothermal titration calorimetry (ITC) revealed the binding of two Cd ions to one molecule of rcgPDI. Circular dichroism (CD) spectrum and tryptophan fluorescence analyses demonstrated that the rcgPDI bound to Cd. The binding markedly changed the two-dimensional or three-dimensional structures. The activity of rcgPDI measured by a PDI Activity Assay Kit was more affected by the addition of Cd than by human PDI. Immunological analyses indicated that C. gigas contained cgPDI at a concentration of 1.0 nmol/g (viscera wet weight). The combination of ITC and quantification results revealed that Cd-binding to cgPDI accounted for 20% of the total bound Cd in the visceral mass. The findings provide new insights into the defense mechanisms of invertebrates against Cd.


2011 ◽  
Vol 83 ◽  
pp. 280-284
Author(s):  
Ming Jiang ◽  
Shu Zhang ◽  
Xiao Yuan He

Fast-starts are brief, sudden accelerations used by fish during predator-prey encounters. In this paper, a three-dimensional (3D) test and analysis method is critical to understand the function of the pectoral fin during maneuvers. An experiment method based on Fourier Transform Profilometry for 3D pectoral fin profile variety during fish maneuvers is proposed. This method was used in a carp fast-start during prey. Projecting the moiré fringes onto a carp pectoral fin it will produce the deformed fringe patterns contain 3D information. A high speed camera captures these time-sequence images. By Fourier transform, filter, inverse Fourier transform and unwrap these phase maps in 3D phase space, the complex pectoral fin profile variety were really reconstructed. The present study provides a new method to quantify the analysis of kinetic characteristic of the pectoral fin during maneuvers.


2017 ◽  
Vol 38 (2) ◽  
pp. 808-816 ◽  
Author(s):  
Salam Rahmatalla ◽  
Jonathan DeShaw ◽  
Khalid Barazanji

This work investigates the effect of the contact surfaces on the biomechanical response of supine humans during whole-body vibration and shocks. Twelve participants were exposed to three-dimensional random vibration and shocks and were tested with two types of contact surfaces: (i) litter only, and (ii) litter with spinal board. The two configurations were tested with and without body straps to secure the supine human. The addition of the spinal board reduced the involuntary motion of the supine humans in most directions. There were significant reductions in the relative vertical accelerations at the neck and torso areas, especially during shocks ( p < 0.01). The inclusion of body straps with the spinal board was more effective in reducing the relative motion in most directions when shocks were presented. This study shows that the ergonomic design of the human transport system and the underlying contacting surfaces should be studied during dynamic transport environments.


Sign in / Sign up

Export Citation Format

Share Document