scholarly journals De novo-derived cationic antimicrobial peptide activity in a murine model of Pseudomonas aeruginosa bacteraemia

2007 ◽  
Vol 60 (3) ◽  
pp. 669-672 ◽  
Author(s):  
Berthony Deslouches ◽  
Ivan A. Gonzalez ◽  
Dilhari DeAlmeida ◽  
Kazi Islam ◽  
Chad Steele ◽  
...  
Microbiology ◽  
2009 ◽  
Vol 155 (9) ◽  
pp. 2826-2837 ◽  
Author(s):  
Joanne Cummins ◽  
F. Jerry Reen ◽  
Christine Baysse ◽  
Marlies J. Mooij ◽  
Fergal O'Gara

Colistin is an important cationic antimicrobial peptide (CAMP) in the fight against Pseudomonas aeruginosa infection in cystic fibrosis (CF) lungs. The effects of subinhibitory concentrations of colistin on gene expression in P. aeruginosa were investigated by transcriptome and functional genomic approaches. Analysis revealed altered expression of 30 genes representing a variety of pathways associated with virulence and bacterial colonization in chronic infection. These included response to osmotic stress, motility, and biofilm formation, as well as genes associated with LPS modification and quorum sensing (QS). Most striking was the upregulation of Pseudomonas quinolone signal (PQS) biosynthesis genes, including pqsH, pqsB and pqsE, and the phenazine biosynthesis operon. Induction of this central component of the QS network following exposure to subinhibitory concentrations of colistin may represent a switch to a more robust population, with increased fitness in the competitive environment of the CF lung.


2005 ◽  
Vol 49 (8) ◽  
pp. 3208-3216 ◽  
Author(s):  
Berthony Deslouches ◽  
Kazi Islam ◽  
Jodi K. Craigo ◽  
Shruti M. Paranjape ◽  
Ronald C. Montelaro ◽  
...  

ABSTRACT Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg2+ and Ca2+ ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg2+ and Ca2+. WLBU2 is able to kill P. aeruginosa (106 CFU/ml) in human serum, with a minimum bactericidal concentration of <9 μM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 μM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis.


Author(s):  
Zhikai Ye ◽  
Haishuang Zhu ◽  
Shan Zhang ◽  
Jing Li ◽  
Jin Wang ◽  
...  

Designing the homogeneous assembly of the bio–nano interface to fine-tune the interactions between the nanoprobes and biological systems is of prime importance to improve the antimicrobial efficiency of nanomedicines.


2021 ◽  
Vol 22 (6) ◽  
pp. 2857
Author(s):  
Filomena Battista ◽  
Rosario Oliva ◽  
Pompea Del Vecchio ◽  
Roland Winter ◽  
Luigi Petraccone

Lasioglossin III (LL-III) is a cationic antimicrobial peptide derived from the venom of the eusocial bee Lasioglossum laticeps. LL-III is extremely toxic to both Gram-positive and Gram-negative bacteria, and it exhibits antifungal as well as antitumor activity. Moreover, it shows low hemolytic activity, and it has almost no toxic effects on eukaryotic cells. However, the molecular basis of the LL-III mechanism of action is still unclear. In this study, we characterized by means of calorimetric (DSC) and spectroscopic (CD, fluorescence) techniques its interaction with liposomes composed of a mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-rac-phosphoglycerol (POPG) lipids as a model of the negatively charged membrane of pathogens. For comparison, the interaction of LL-III with the uncharged POPC liposomes was also studied. Our data showed that LL-III preferentially interacted with anionic lipids in the POPC/POPG liposomes and induces the formation of lipid domains. Furthermore, the leakage experiments showed that the peptide could permeabilize the membrane. Interestingly, our DSC results showed that the peptide-membrane interaction occurs in a non-disruptive manner, indicating an intracellular targeting mode of action for this peptide. Consistent with this hypothesis, our gel-retardation assay experiments showed that LL-III could interact with plasmid DNA, suggesting a possible intracellular target.


2022 ◽  
Vol 1249 ◽  
pp. 131482
Author(s):  
Mina Răileanu ◽  
Barbara Lonetti ◽  
Charles-Louis Serpentini ◽  
Dominique Goudounèche ◽  
Laure Gibot ◽  
...  

2017 ◽  
Vol 233 (2) ◽  
pp. 1041-1050 ◽  
Author(s):  
Prasanta Ghosh ◽  
Arpita Bhoumik ◽  
Sudipta Saha ◽  
Sandipan Mukherjee ◽  
Sarfuddin Azmi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document