scholarly journals Economically Motivated Adulteration of Lemon Juice: Cavity Ring Down Spectroscopy in Comparison with Isotope Ratio Mass Spectrometry: Round-Robin Study

2019 ◽  
Vol 102 (5) ◽  
pp. 1544-1551
Author(s):  
Madhavi Mantha ◽  
Kevin M Kubachka ◽  
John R Urban ◽  
Catherine O Dasenbrock ◽  
Anatoly Chernyshev ◽  
...  

Abstract Background: Economically motivated adulteration (EMA) of foods has become an increasing concern in recent years, with lemon juice as a popular target. Objective and Method: In this work, an optimized preparation procedure for the isolation of citric acid from lemon juice was validated using elemental analyzer-isotope ratio MS (EA-IRMS) to detect adulteration with exogenous citric acid. Additionally, 69 imported lemon juice samples were evaluated using combustion module-cavity ring down spectrometry (CM-CRDS) and compared with the well-established EA-IRMS. Equivalency of CM-CRDS to EA-IRMS was further demonstrated by conducting a round-robin study involving eight laboratories throughout the United States, Canada, and New Zealand. Results: Overall, the results obtained for CM-CRDS were statistically indistinguishable from the results obtained using EA-IRMS for EMA lemon juice analysis. Conclusions: Therefore, CM-CRDS is a viable option for this application. Highlights: The CM-CRDS instrumentation is easy to operate, robust, and provides δ13C values comparable to EA-IRMS for citrate analysis. Through a multi-laboratory exercise, CM-CRDS was shown to be an alternative to EA-IRMS in the detection of economic adulteration of lemon juice.

2019 ◽  
Vol 102 (5) ◽  
pp. 1544-1551 ◽  
Author(s):  
Madhavi Mantha ◽  
Kevin M. Kubachka ◽  
John R. Urban ◽  
Catherine O. Dasenbrock ◽  
Anatoly Chernyshev ◽  
...  

2018 ◽  
Vol 101 (6) ◽  
pp. 1857-1863 ◽  
Author(s):  
Madhavi Mantha ◽  
John R Urban ◽  
William A Mark ◽  
Anatoly Chernyshev ◽  
Kevin M Kubachka

Abstract In the last several years, economically motivated adulteration (EMA) of foods including honey has received increased attention. The addition of inexpensive sweeteners such as high fructose corn syrup or cane sugar to honey is still encountered despite scientific methods that can routinely detect this type of adulteration. The standard method for detection of these adulterants utilizes isotope ratio mass spectrometry (IRMS); however, this technique requires an elevated degree of technical knowledge for operation as well as a high cost for purchase and maintenance. Cavity ring down spectroscopy (CRDS) has demonstrated potential for this type of analysis and is less expensive with simpler operation. This study evaluates CRDS for the detection of low-cost sweeteners added to honey and compares the performance of CRDS to IRMS. Several honey samples were analyzed, and the advantages and limitations specific to CRDS were evaluated. Overall, the results indicate that CRDS provides a performance comparable to the benchmark technique IRMS for EMA honey analysis.


Sign in / Sign up

Export Citation Format

Share Document