Effect of Cooking on Levels of Ethylene Dibromide Residues in Rice

1985 ◽  
Vol 68 (4) ◽  
pp. 710-711
Author(s):  
Marion Clower ◽  
James P Mccarthy ◽  
Diane M Rains

Abstract Two studies were conducted to determine the effect that cooking has on the level of residues of ethylene dibromide (EDB) in rice. In the first study, 4 samples of long and medium grain polished white rice containing 113, 295, 956, and 1568 ppb EDB were cooked according to typical label directions. Three batches of cooked rice were prepared from each sample of polished rice and frozen until analysis; each batch was analyzed in duplicate. EDB levels in all cooked rice samples were <10 ppb. In the second study, conducted jointly by the Food and Drug Administration (FDA) and the Environmental Protection Agency (EPA), a sample of medium grain polished white rice containing about 1600 ppb EDB was cooked by each laboratory. Overall average EDB levels in rice analyzed immediately after cooking were 16 and 37 ppb for FDA and EPA, respectively. The corresponding frozen samples contained 8 and 39 ppb EDB. The 2 laboratories exchanged these frozen samples and reanalyzed them to check variability in the analytical procedure. FDA found 49 ppb EDB in the sample cooked by EPA and EPA found 8 ppb EDB in the sample cooked by FDA, thus indicating that analytical methodology was not a major source of variability. The range of EDB levels was therefore attributed to minor differences in the way the rice was cooked or handled immediately after cooking.

1989 ◽  
Vol 21 (6-7) ◽  
pp. 685-698
Author(s):  
J. J. Convery ◽  
J. F. Kreissl ◽  
A. D. Venosa ◽  
J. H. Bender ◽  
D. J. Lussier

Technology transfer is an important activity within the ll.S. Environmental Protection Agency. Specific technology transfer programs such as the activities of the Center for Environmental Research Information, the Innovative and Alternative Technology Program, as well as the Small Community Outreach Program are used to encourage the utilization of cost-effective municipal pollution control technology. Case studies of three technologies including a plant operations diagnostic/remediation methodology, alternative sewer technologies and ultraviolet disinfection are presented. These case studies are presented retrospectively in the context of a generalized concept of how technology flows from science to utilization which was developed in a study by Allen (1977). Additional insights from this study are presented on the information gathering characteristics of engineers and scientists which may be useful in designing technology transfer programs. The recognition of the need for a technology or a deficiency in current practice are important stimuli other than technology transfer for accelerating the utilization of new technology.


1987 ◽  
Vol 19 (10) ◽  
pp. 41-49 ◽  
Author(s):  
Ray Dinges ◽  
Jim Doersam

The Hornsby Bend Hyacinth Facility, the first such system built under the U. S. Environmental Protection Agency “Construction Grants Program”, represents the culmination of over a decade of experience at the City of Austin with hyacinth treatment. The facility consists of three culture basins 265 m in length with an area of 1.6 ha. To permit year-round hyacinth culture, basins are covered with a 2.06 ha unitary greenhouse structure. Fenced exclusion areas at intervals along sides of basins serve as natural aerators and enhance fish production. The system, operated in an aerobic mode, was designed to daily treat about three million liters of sludge lagoon supernatant. Exclusion of large vertebrate predators and stocking of basins with selected animal species will provide a unique ecosystem. Basins were planted with hyacinth in late October, 1985 and discharge commenced on February 3, 1986. Functional characteristics and ecological considerations of the facility are discussed and operational performance data are presented. Maintenance harvesting of hyacinth and disposition of plant material are described. Application of greenhoused hyacinth treatment systems are addressed.


Sign in / Sign up

Export Citation Format

Share Document