Development and Validation of a Method for Determining Elements in Solid Waste Using Microwave Digestion

1991 ◽  
Vol 74 (2) ◽  
pp. 360-366 ◽  
Author(s):  
David A Binstock ◽  
Peter M Grohse ◽  
Alvia Gaskill ◽  
Charles Sellers ◽  
H M Kingston ◽  
...  

Abstract A microwave-assisted method for preparing samples for determination of elements In solid waste has been developed (draft EPA Method 3051). Validation of the sample preparation method was performed through a collaborative study to determine its precision and accuracy. Fifteen independent laboratories digested 4 National Institute of Standards and Technology (NIST) standard reference materials (SRMs) and 1 solvent recovery waste in duplicate. Digestates were analyzed for 19 elements using inductively coupled plasma (ICP) emission spectroscopy. The precision and bias of the method were evaluated. When compared with an open vessel hot-plate digestion method (SW-846 Method 3050), the microwave method produced similar analytical results with better overall precision. Bias for the 1 sample that allowed this determination was found to be excellent.

2003 ◽  
Vol 86 (2) ◽  
pp. 439-448 ◽  
Author(s):  
Lisa Jo Melnyk ◽  
Jeffrey N Morgan ◽  
Reshan Fernando ◽  
Edo D Pellizzari ◽  
Olujide Akinbo

Abstract A study was conducted to evaluate the applicability of inductively coupled plasma-mass spectrometry (ICP-MS) techniques for determination of metals in composite diets. Aluminum, cadmium, chromium, copper, lead, manganese, nickel, vanadium, and zinc were determined by this method. Atmospheric pressure microwave digestion was used to solubilize analytes in homogenized composite diet samples, and this procedure was followed by ICP-MS analysis. Recovery of certified elements from standard reference materials ranged from 92 to 119% with relative standard deviations (RSDs) of 0.4–1.9%. Recovery of elements from fortified composite diet samples ranged from 75 to 129% with RSDs of 0–11.3%. Limits of detection ranged from 1 to 1700 ng/g; high values were due to significant amounts of certain elements naturally present in composite diets. Results of this study demonstrate that low-resolution quadrupole-based ICP-MS provides precise and accurate measurements of the elements tested in composite diet samples.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wenshan Ni ◽  
Xiangju Mao ◽  
Hongli Zhang ◽  
Lu Liu ◽  
Xiaorui Guo ◽  
...  

Background: Platinum (Pt), palladium (Pd), rhodium (Rh) and iridium (Ir) are platinum group elements (PGEs) and also important elements of geochemistry and environmental chemistry with the similar physic-chemical properties, which have been widely used in industry and laboratory. However, due to the low abundance and inhomogeneous distribution in natural ore as well as the nugget effect, the accurate determination of PGEs has been a challenge to analytical chemistry. Methods: In this work, a novel fire assay method was reported for the determination of ultra-trace Pt, Pd, Rh and Ir in geochemical samples. Tin powder (Sn) instead of stannic oxide (SnO2) was used as fire assay collector to reduce the melting temperature from 1250 oC to 1050 oC, the escape of molten material caused by high temperature was successfully avoided. Tin bead was compressed into thin slice and dissolved by HCl. For the target Pt, Pd, Rh and Ir, HCl insoluble substance such as PtSn4, PdSn4, RhSn4 and Ir3Sn7 were formed and separated from matrix by filtering. The metal compounds precipitate together with filter paper were microwave-assisted completely digested by aqua regia (50%, v/v), thence the sample solution were determined by inductively coupled plasma mass spectrometry (ICP-MS). Results: Compared with nickel oxide and lead oxide in nickel sulfide /lead fire assay, the reagent blank of tin powder were relatively low and could be directly employed in tin fire assay to collect Pt, Pd, Rh and Ir without purifying. Moreover, the harm of nickel oxide and lead oxide to the analyst and environment was avoided by using the non-toxic tin powder. The decomposition method of chromite and black shale were investigated as well as the amount of tin powder and flour, microwave digestion program for the determination of Pt, Pd, Rh and Ir were optimized. Besides, the influence of mass spectrum interference of co-existing elements was discussed and the standard mode and kinetic energy discrimination collision pool mode were compared. Under the optimal conditions, excellent curve fitting of Pt, Pd, Rh and Ir were obtained between 0.01~100 ng mL-1 , with the correlation coefficients exceeding 0.9996. The detection limits were from 0.003 ng g -1 to 0.057 ng g -1 . Conclusion: The developed method was applied to analyze the Chinese Certified Reference Materials and the determined values were in good agreement with the certified values.


2019 ◽  
Vol 102 (2) ◽  
pp. 590-604 ◽  
Author(s):  
Patrick J Gray ◽  
William Cunningham

Abstract Background: An interlaboratory study was conducted to test U.S. Food and Drug Administration (FDA) Elemental Analysis Manual (EAM) Method 4.7, “Inductively Coupled Plasma-Mass Spectrometric Determination of Arsenic, Cadmium, Chromium, Lead, Mercury, and Other Elements in Food Using Microwave Assisted Digestion.” Objective: The goal of the study was to demonstrate the performance of FDA EAM Method 4.7. Methods: Fourteen laboratories participated in the collaborative study, including nine Food Emergency Response Network state laboratories and five federal FDA laboratories. Laboratories tested 8 labeled standard reference materials and 12 blinded foods: mayonnaise, dark chocolate, sunflowerseeds, hamburger with cheese, brown rice flour (blinded reference material included as a test food), infant formula, canned smoked oysters, sardines in tomato paste, swordfish, mineral water, cinnamon, and a multivitamin. The blinded test foods represented every sector of the AOAC food triangle. Participants measured the mass fraction of each element in each sample in triplicate. Results:Horwitz Ratio (HorRat) values were better than 1.5 for all As, Cd, Cu, Hg, Mo, Ni, Pb,and Se measurements when at least eight laboratories reported results greater than LOQ. The HorRat values were better than 1.5 for all Mn and Zn measurements except for the multivitamin and for all Cr measurements exceptfor sunflower seeds, in which the nonhomogeneity was identified. The average HorRat value of the blinded test foods was 0.66 for results greater than LOQ(n = 4206). Conclusions: The study showed that the method performed satisfactorily as a standard method for extractibleelemental analysis of food. Highlights: The method met or exceeded the performance expected.


1997 ◽  
Vol 80 (3) ◽  
pp. 647-650 ◽  
Author(s):  
Da-Hai Sun ◽  
James K Waters ◽  
Thomas P Mawhtnney

Abstract A microwave digestion procedure was developed for determining aluminum and boron and 13 other elements in plant tissues by inductively coupled plasma atomic emission spectrometry (ICP-AES). The sample (0.5 g) was digested in a closed Teflon vessel with 10 mL concentrated nitric acid and 3 mL hydrofluoric acid, and further digested in an open Teflon vessel with 5 mL hydrogen peroxide. Excess hydrofluoric acid was eliminated by adding 0.2 g silicon (IV) oxide. Four National Institute of Standards and Technology standard reference materials (apple leaves, peach leaves, tomato leaves, and pine needles) were analyzed to test the reliability of the method. The excellent recoveries indicate that the proposed procedure is simple and effective for determination of Al, B, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, S, Sr, and Zn in plants.


Sign in / Sign up

Export Citation Format

Share Document