43 Single and Multiple-breed Genomic Predictions for Conformation Traits of Canadian Dairy Goats

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 27-28
Author(s):  
Erin Massender ◽  
Luiz F Brito ◽  
Laurence Maignel ◽  
Hinayah R Oliveira ◽  
Mohsen Jafarikia ◽  
...  

Abstract The use of multiple-breed models can increase the accuracy of estimated breeding values (EBV) when few phenotypes are available for a trait. However, pooling breeds is not always beneficial for genomic evaluations due to the low consistency of gametic phase between individual breeds. The objective of this study was to compare the expected gain in accuracy of single-step genomic breeding values (GEBV) for conformation traits of Canadian Alpine and Saanen goats predicted using single and multiple-breed models. The traits considered were body capacity, dairy character, feet and legs, fore udder, general appearance, rear udder, suspensory ligament, and teats, all recorded by trained classifiers, using a 1 to 9 scale. The full datasets included a total of 7,500 phenotypes for each trait (5,158 Alpine and 2,342 Saanen) and 1,707 50K genotypes (833 Alpine, 874 Saanen). Standard errors of prediction (SEP) were obtained for EBV and GEBV predicted using single-trait animal models on full or validation datasets. Breed difference was accounted for as a fixed effect in the multiple-breed models. Average theoretical accuracies were calculated from the SEP. For Saanen, with fewer records, expected accuracies of EBV and GEBV for the validation animals (selection candidates) were consistently higher for the multiple-breed models. Trait specific gains in theoretical accuracy of GEBV relative to EBV for the selection candidates ranged from 30 to 48% for Alpine and 41 to 61% for Saanen. Averaged across all traits, GEBV predicted from the full dataset were 32 to 38% more accurate than EBV for genotyped animals and the largest gains were found for does without conformation records (49 to 55%) and bucks without daughter records (56 to 82%). Overall, the implementation of genomic selection would substantially increase selection accuracy for young breeding candidates and, consequently, the rate of genetic improvement for conformation traits in Canadian dairy goats.

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Jesús Fernández ◽  
Beatriz Villanueva ◽  
Miguel Angel Toro

Abstract Background In commercial fish, dominance effects could be exploited by predicting production abilities of the offspring that would be generated by different mating pairs and choosing those pairs that maximise the average offspring phenotype. Consequently, matings would be performed to reduce inbreeding depression. This can be achieved by applying mate selection (MS) that combines selection and mating decisions in a single step. An alternative strategy to MS would be to apply minimum coancestry mating (MCM) after selection based on estimated breeding values. The objective of this study was to evaluate, by computer simulations, the potential benefits that can be obtained by implementing MS or MCM based on genomic data for exploiting dominance effects when creating commercial fish populations that are derived from a breeding nucleus. Methods The selected trait was determined by a variable number of loci with additive and dominance effects. The population consisted of 50 full-sib families with 30 offspring each. Males and females with the highest estimated genomic breeding values were selected in the nucleus and paired using the MCM strategy. Both MCM and MS were used to create the commercial population. Results For a moderate number of SNPs, equal or even higher mean phenotypic values are obtained by selecting on genomic breeding values and then applying MCM than by using MS when the trait exhibited substantial inbreeding depression. This could be because MCM leads to high levels of heterozygosity across the whole genome, even for loci affecting the trait that are in linkage equilibrium with the SNPs. In contrast, MS specifically promotes heterozygosity for SNPs for which a dominance effect has been detected. Conclusions In most scenarios, for the management of aquaculture breeding programs it seems advisable to follow the MCM strategy when creating the commercial population, especially for traits with large inbreeding depression. Moreover, MCM has the appealing property of reducing inbreeding levels, with a corresponding reduction in inbreeding depression for traits beyond those included in the selection objective.


2015 ◽  
Vol 98 (11) ◽  
pp. 8201-8208 ◽  
Author(s):  
S. Mucha ◽  
R. Mrode ◽  
I. MacLaren-Lee ◽  
M. Coffey ◽  
J. Conington

2020 ◽  
Author(s):  
Rafet Al-Tobasei ◽  
Ali R. Ali ◽  
Andre L. S. Garcia ◽  
Daniela Lourenco ◽  
Tim Leeds ◽  
...  

Abstract BackgroundOne of the most important goals for the rainbow trout aquaculture industry is to improve fillet yield and fillet quality. Previously, we showed that a 50K transcribed-SNP chip can be used to detect quantitative trait loci (QTL) associated with fillet yield and fillet firmness. In this study, data from 1,568 fish genotyped for the 50K transcribed-SNP chip and ~774 fish phenotyped for fillet yield and fillet firmness were used in a single-step genomic BLUP (ssGBLUP) model to compute the genomic estimated breeding values (GEBV). In addition, pedigree-based best linear unbiased prediction (PBLUP) was used to calculate traditional, family-based estimated breeding values (EBV). ResultsThe genomic predictions outperformed the traditional EBV by 35% for fillet yield and 42% for fillet firmness. The predictive ability for fillet yield and fillet firmness was 0.19 - 0.20 with PBLUP, and 0.27 with ssGBLUP. Additionally, reducing SNP panel densities indicated that using 500 – 800 SNPs in genomic predictions still provides predictive abilities higher than PBLUP. ConclusionThese results suggest that genomic evaluation is a feasible strategy to identify and select fish with superior genetic merit within rainbow trout families, even with low-density SNP panels.


2020 ◽  
Author(s):  
Rafet Al-Tobasei ◽  
Ali R. Ali ◽  
Andre L. S. Garcia ◽  
Daniela Lourenco ◽  
Tim Leeds ◽  
...  

Abstract Background One of the most important goals for the rainbow trout aquaculture industry is to improve muscle yield and fillet quality. Previously, we showed that a 50K transcribed-SNP chip can be used to detect quantitative trait loci (QTL) associated with muscle yield and fillet firmness. In this study, data from 1,568 fish genotyped for the 50K transcribed-SNP chip and ~774 fish phenotyped for muscle yield and fillet firmness were used in a single-step genomic BLUP (ssGBLUP) model to compute the genomic estimated breeding values (GEBV). In addition, pedigree-based best linear unbiased prediction (PBLUP) was used to calculate traditional, family-based estimated breeding values (EBV). Results The genomic predictions outperformed the traditional EBV by 35% for muscle yield and 42% for fillet firmness. The predictive ability for muscle yield and fillet firmness was 0.19 - 0.20 with PBLUP, and 0.27 with ssGBLUP. Additionally, reducing SNP panel densities indicated that using 500 – 800 SNPs in genomic predictions still provides predictive abilities higher than PBLUP. Conclusion These results suggest that genomic evaluation is a feasible strategy to identify and select fish with superior genetic merit within rainbow trout families, even with low-density SNP panels.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 37-39
Author(s):  
Andrea Plotzki Reis ◽  
Rodrigo Fagundes da Costa ◽  
Fabyano Fonseca e Silva ◽  
Fernando Flores Cardoso ◽  
Matthew L Spangler

Abstract The aim of this study was to investigate selective phenotyping to maintain adequate prediction accuracy. A simulation was conducted, with 10 replicates, using QMSim to mimic the structure and size of a Braford population. A population with 50 generations, 500 animals per generation, was created with phenotyping and genotyping beginning in generation 11. The scenarios investigated were: 1) Randomly phenotype and genotype 10, 25, 50, 75, and 100% of individuals each generation and; 2) Randomly phenotype and genotype 10, 25, 50, 75, and 100% of individuals in every-other generation. Estimated breeding values (EBV) were obtained using single-step GBLUP and accuracy was determined as the correlation between true BV from simulation and those estimated from the blupf90 family of programs. For scenarios where phenotyping and genotyping occurred every generation, EBV accuracies in generation 11 and 50 ranged from 0.32 to 0.32, 0.42 to 0.43, 0.49 to 0.51, 0.53 to 0.56 and 0.57 to 0.59 when 10, 25, 50, 75, and 100% of animals were chosen, respectively. The highest accuracies were 0.40 and 0.50 in generation 38 for scenarios 10 and 25%; 0.56, 0.61 and 0.64 in generation 40 for scenarios 50, 75 and 100%, respectively. When animals were selected every-other generation, EBV accuracy in generation 11 and 50 ranged from 0.24 to 0.26, 0.36 to 0.36, 0.43 to 0.42, 0.48 to 0.44 and 0.53 to 0.48 for 10, 25, 50, 75 and 100% of selected animals, respectively. The highest accuracies were in generation 23 for scenario 10% (0.31), in generation 37 for scenarios 25 (0.43), 50 (0.50) and 75% (0.55) and in generation 39 for 100% (0.59). Although increasing the density of phenotyped and genotyped animals increased prediction accuracy, some gains were marginal. These differences in accuracy must be contemplated in an economic framework to determine the cost-benefit of additional information.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Øyvind Nordbø ◽  
Arne B. Gjuvsland ◽  
Leiv Sigbjørn Eikje ◽  
Theo Meuwissen

Abstract Background The main aim of single-step genomic predictions was to facilitate optimal selection in populations consisting of both genotyped and non-genotyped individuals. However, in spite of intensive research, biases still occur, which make it difficult to perform optimal selection across groups of animals. The objective of this study was to investigate whether incomplete genotype datasets with errors could be a potential source of level-bias between genotyped and non-genotyped animals and between animals genotyped on different single nucleotide polymorphism (SNP) panels in single-step genomic predictions. Results Incomplete and erroneous genotypes of young animals caused biases in breeding values between groups of animals. Systematic noise or missing data for less than 1% of the SNPs in the genotype data had substantial effects on the differences in breeding values between genotyped and non-genotyped animals, and between animals genotyped on different chips. The breeding values of young genotyped individuals were biased upward, and the magnitude was up to 0.8 genetic standard deviations, compared with breeding values of non-genotyped individuals. Similarly, the magnitude of a small value added to the diagonal of the genomic relationship matrix affected the level of average breeding values between groups of genotyped and non-genotyped animals. Cross-validation accuracies and regression coefficients were not sensitive to these factors. Conclusions Because, historically, different SNP chips have been used for genotyping different parts of a population, fine-tuning of imputation within and across SNP chips and handling of missing genotypes are crucial for reducing bias. Although all the SNPs used for estimating breeding values are present on the chip used for genotyping young animals, incompleteness and some genotype errors might lead to level-biases in breeding values.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rafet Al-Tobasei ◽  
Ali Ali ◽  
Andre L. S. Garcia ◽  
Daniela Lourenco ◽  
Tim Leeds ◽  
...  

Abstract Background One of the most important goals for the rainbow trout aquaculture industry is to improve fillet yield and fillet quality. Previously, we showed that a 50 K transcribed-SNP chip can be used to detect quantitative trait loci (QTL) associated with fillet yield and fillet firmness. In this study, data from 1568 fish genotyped for the 50 K transcribed-SNP chip and ~ 774 fish phenotyped for fillet yield and fillet firmness were used in a single-step genomic BLUP (ssGBLUP) model to compute the genomic estimated breeding values (GEBV). In addition, pedigree-based best linear unbiased prediction (PBLUP) was used to calculate traditional, family-based estimated breeding values (EBV). Results The genomic predictions outperformed the traditional EBV by 35% for fillet yield and 42% for fillet firmness. The predictive ability for fillet yield and fillet firmness was 0.19–0.20 with PBLUP, and 0.27 with ssGBLUP. Additionally, reducing SNP panel densities indicated that using 500–800 SNPs in genomic predictions still provides predictive abilities higher than PBLUP. Conclusion These results suggest that genomic evaluation is a feasible strategy to identify and select fish with superior genetic merit within rainbow trout families, even with low-density SNP panels.


2021 ◽  
Vol 99 (2) ◽  
Author(s):  
Jorge Hidalgo ◽  
Daniela Lourenco ◽  
Shogo Tsuruta ◽  
Yutaka Masuda ◽  
Stephen Miller ◽  
...  

Abstract The stability of genomic evaluations depends on the amount of data and population parameters. When the dataset is large enough to estimate the value of nearly all independent chromosome segments (~10K in American Angus cattle), the accuracy and persistency of breeding values will be high. The objective of this study was to investigate changes in estimated breeding values (EBV) and genomic EBV (GEBV) across monthly evaluations for 1 yr in a large genotyped population of beef cattle. The American Angus data used included 8.2 million records for birth weight, 8.9 for weaning weight, and 4.4 for postweaning gain. A total of 10.1 million animals born until December 2017 had pedigree information, and 484,074 were genotyped. A truncated dataset included animals born until December 2016. To mimic a scenario with monthly evaluations, 2017 data were added 1 mo at a time to estimate EBV using best linear unbiased prediction (BLUP) and GEBV using single-step genomic BLUP with the algorithm for proven and young (APY) with core group fixed for 1 yr or updated monthly. Predictions from monthly evaluations in 2017 were contrasted with the predictions of the evaluation in December 2016 or the previous month for all genotyped animals born until December 2016 with or without their own phenotypes or progeny phenotypes. Changes in EBV and GEBV were similar across traits, and only results for weaning weight are presented. Correlations between evaluations from December 2016 and the 12 consecutive evaluations were ≥0.97 for EBV and ≥0.99 for GEBV. Average absolute changes for EBV were about two times smaller than for GEBV, except for animals with new progeny phenotypes (≤0.12 and ≤0.11 additive genetic SD [SDa] for EBV and GEBV). The maximum absolute changes for EBV (≤2.95 SDa) were greater than for GEBV (≤1.59 SDa). The average(maximum) absolute GEBV changes for young animals from December 2016 to January and December 2017 ranged from 0.05(0.25) to 0.10(0.53) SDa. Corresponding ranges for animals with new progeny phenotypes were from 0.05(0.88) to 0.11(1.59) SDa for GEBV changes. The average absolute change in EBV(GEBV) from December 2016 to December 2017 for sires with ≤50 progeny phenotypes was 0.26(0.14) and for sires with >50 progeny phenotypes was 0.25(0.16) SDa. Updating the core group in APY without adding data created an average absolute change of 0.07 SDa in GEBV. Genomic evaluations in large genotyped populations are as stable and persistent as the traditional genetic evaluations, with less extreme changes.


Sign in / Sign up

Export Citation Format

Share Document